Skip to main content
Log in

Optimization of CVD parameters for long ZnO NWs grown on ITO/glass substrate

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The optimization of chemical vapour deposition (CVD) parameters for long and vertically aligned (VA) ZnO nanowires (NWs) were investigated. Typical ZnO NWs as a single crystal grown on indium tin oxide (ITO)-coated glass substrate were successfully synthesized. First, the conducted side of ITO–glass substrate was coated with zinc acetate dihydrate to form seed layer of ZnO nanocrystals. Double zone tube furnace connected to vacuum pump was used for ZnO growth process. Zn metal powder was positioned at the first zone at temperature 900 C. The ITO–glass substrate with pre-coated seed layer was then located in the second zone of tube furnace at growth temperature of 550 C. The growth of ZnO NWs was controlled under constant concentration of seed layer, while other parameters such as argon and oxygen flow rates, substrate position, time and oxygen flow rate were varied. The VA ZnO NWs were finally characterized by scanning electron microscopy, X-ray diffractometer and high-resolution transmission electron microscope equipped with energy-dispersive X-ray spectroscopy. The results show that long and VA ZnO NWs were single crystalline with hexagonal wurtzite structure. The ultimate length and average diameter of ZnO NWs were 10 μm and 50–100 nm, respectively. These were achieved under optimized CVD growth parameters. The mechanism of vertical growth model of ZnO NWs is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Liu B and Zeng H C 2003 J. Am. Chem. Soc. 125 4430

    Article  Google Scholar 

  2. Ibupoto Z H, Khun K, Eriksson M, AlSalhi M, Atif M, Ansari A and Willander M 2013 Materials 6 3584

    Article  Google Scholar 

  3. Foo K L, Hashim U, Muhammad K and Voon C H 2014 Nanoscale Res. Lett. 9 429

    Article  Google Scholar 

  4. Lu L, Chen J, Li L and Wang W 2012 Nanoscale Res. Lett. 7 293

    Article  Google Scholar 

  5. Hsiao C -C and Luo L -S 2014, Sensors 14 12219

    Article  Google Scholar 

  6. Zhang Q, Dandeneau S C, Zhou X and Cao G 2009 Adv. Mater. 21 4087

    Article  Google Scholar 

  7. Yang W, Wan F, Chen S and Jiang C 2009 Nanoscale Res. Lett. 4 1486

    Article  Google Scholar 

  8. Ramachandran K, Kumar G G, Kim A R and Yoo D J 2014 Bull. Korean Chem. Soc. 35 1091

    Article  Google Scholar 

  9. Elamin N and Elsanousi A 2013 J. Appl. Ind. Sci. 1 32

    Google Scholar 

  10. Rashidi H, Ahmadpour A, Bamoharram F F, Zebarjad S M, Heravi M M and Tayari F 2014 Chemical Papers 68 516

    Article  Google Scholar 

  11. Zak A B, Majid W H A, Wang H Z, Yousefi R, Golsheikh A M and Ren Z F 2013 Ultrason. Sonochem. 20 395

    Article  Google Scholar 

  12. Nayak A P, Katzenmeyer A and Gosho Y 2010 Proceedings of the national conference on undergraduate research (NCUR), University of Montana, Missoula, April 15–17

  13. Sornalatha D J and Murugakoothan P 2013 J. Emerg. Technol. Adv. Eng. 3 414

    Google Scholar 

  14. Khan Z R, Khan M S, Zulfequar M and Khan M S 2011 Mater. Sci. Appl. 2 340

    Google Scholar 

  15. Foo K L, Uda Hashim, Kashif Muhammad and Chun Hong Voon 2014, Nanoscale Res. Lett. 9 429

    Article  Google Scholar 

  16. Prakashi T, Jayaprakash R, Neri G and Kumar S 2013 , J. Nanomater. 2013 8

    Google Scholar 

  17. Lu L, Chen J, Li L and Wang W 2012 Nanoscale Res. Lett. 7 293

    Article  Google Scholar 

  18. Rodwihok C, Gardchareon A, Phadungdhitidhada S, Wongratanaphisan D and Choopun S 2014 Thai J. Phys. Series 10 25001

    Google Scholar 

  19. Hassan N K, Hashim M R, Mahdi M A and Allam N K 2012 ECS J. Solid State Sci. Technol. 1 86

    Article  Google Scholar 

  20. Ma T, Wang Y, Tang R, Yu H and Jiang H 2013 J. Appl. Phys. 113 204503

    Article  Google Scholar 

  21. Dongshan Y, Tarek T, James T M J, Valentin C and Curtis R T 2010 Nanoscale Res. Lett. 5 1333

    Article  Google Scholar 

  22. Giri P K, Patel P K, Panchal C J et al 2007, Synth. React. Inorg. Metal-Org. Nano-Metal. Chem. 37 437

    Article  Google Scholar 

  23. Khanlary M R, Vahedi V and Reyhani A 2012 Molecules 17 5021

    Article  Google Scholar 

  24. Greene L E, Yuhas B D, Law M, Zitoun D and Yang P 2014 Inorg. Chem. 45 7535

    Article  Google Scholar 

  25. Kim K H, Utashiro K, Abe Y and Kawamura M 2014 Int. J. Electrochem. Sci. 9 2080

    Google Scholar 

  26. Kumar P S, Yogeshwari M, Raj A D, Mangalaraj D, Nataraj D and Pal U 2009 J. Nano Res. 5 223

    Article  Google Scholar 

  27. Lucas M, Wang Z L and Riedo E 2010 Phys. Rev. B 81 045415

    Article  Google Scholar 

  28. Zhang N, Yi R, Shi R, Gao G, Chen G and Liu X 2009 Mater. Lett. 63 496

    Article  Google Scholar 

  29. Yong-Zhe Z, Li-Hui W, Yan-Ping L, Er-Qing X, De Y and Jiang-Tao C 2009 Chin. Phys. Lett. 26 038201

    Article  Google Scholar 

  30. Hughes W L and Wanga Z L 2005 Appl. Phys. Lett. 86 043106

    Article  Google Scholar 

  31. Gui Z, Liu J, Wang Z, Song L, Hu Y, Fan W and Chen D 2005 J. Phys. Chem. B 109 1113

    Article  Google Scholar 

  32. Wua C -Y, Hsua H -C, Chenga H -M, Yanga S and Hsieha W -F 2006, J. Cryst. Growth 287 189

    Article  Google Scholar 

  33. Tasker P W 1979 J. Phys. C: Solid State Phys. 12 4977

    Article  Google Scholar 

  34. Greene L E, Law M, Tan D H, Montano M., Goldberge J, Gomorja G and Yang P 2005 Nano Lett. 5 1231

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support via the Department of State/USA/CRDF/ISFP and the opportunity afforded by the University of Technology, Baghdad, Iraq. We also thank Dr W Zhou and his group at AMIRI/University of New Orleans/Louisiana and for the benefit of using their materials and equipment, and for giving us the useful suggestions for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ABDULQADER D FAISAL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FAISAL, A.D. Optimization of CVD parameters for long ZnO NWs grown on ITO/glass substrate. Bull Mater Sci 39, 1635–1643 (2016). https://doi.org/10.1007/s12034-016-1316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1316-6

Keywords

Navigation