Skip to main content

Advertisement

Log in

Near-infrared spectral downshifting in Sr(3−x)(VO4)2: x Nd3+ phosphor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the spectral downshifting (DS) from ultraviolet (UV) light to near-infrared (NIR) radiation in Sr 3 (VO 4 ) 2 :Nd3+ phosphor is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with steady state luminescence time decay curves were studied, which confirmed the energy transfer (ET) from VO\(_{\mathbf {4}}^{{\kern 4pt}\mathbf {3}\boldsymbol {-}}\) ions to Nd3+ ions. The DS phenomenon by phosphor was observed, which involved emission of NIR photons (1075 and 1064 nm) and visible photons (506 nm) from absorbed UV photons at 349 nm. The theoretical energy transfer efficiency (ETE) was calculated with the help of steady state luminescence time decay curves and the maximum ET efficiency approached up to 41.33%. The crystalline silicon (c-Si) cell has maximum efficiency in NIR region of solar spectrum due to an energy band gap of 1.12 eV. Sr 3 (VO 4 ) 2 :Nd3+ can be potentially used as a NIR DC phosphor for c-Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang Q Y and Huang X Y 2010 Prog. Mater. Sci. 55 353

    Article  Google Scholar 

  2. Dexter D L 1957 Phys. Rev. 108 630

    Article  Google Scholar 

  3. Sommerdijk J L, Bril A and de Jager A W 1974 J. Lumin. 9 288

    Article  Google Scholar 

  4. Piper W W, DeLuca J A and Ham F S 1974 J. Lumin. 8 344

    Article  Google Scholar 

  5. Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M and Meijerink A 2005 Phys. Rev. B 71 014119

    Article  Google Scholar 

  6. Trupke T, Green M A and Würfel P 2002 J. Appl. Phys. 92 1674

    Google Scholar 

  7. Richards B S and Shalav A 2005 Synth. Met. 154 61

    Article  Google Scholar 

  8. Richards B S 2006 Sol. Energy Mater. Sol. Cells 90 2329

    Article  Google Scholar 

  9. Richards B S 2006 Sol. Energy Mater. Sol. Cells 90 1189

    Article  Google Scholar 

  10. Zhang Q Y, Yang C H and Pan Y X 2007 Appl. Phys. Lett. 90 021107

    Article  Google Scholar 

  11. Zhang Q Y, Yang C H, Jiang Z H and Ji X H 2007 Appl. Phys. Lett. 90 061914

    Article  Google Scholar 

  12. Zhang Q Y, Yang G F and Jiang Z H 2007 Appl. Phys. Lett. 91 051903

    Article  Google Scholar 

  13. Zhang Q Y and Liang X F 2008 J. Soc. Inform. Display 16 755

    Article  Google Scholar 

  14. Huang X Y and Zhang Q Y 2009 J. Appl. Phys. 105 053521

    Article  Google Scholar 

  15. Yuan J L, Zeng X Y, Zhao J T, Zhang Z J, Chen H H and Yang X X 2008 J. Phys. D: Appl. Phys. 41 105406

    Article  Google Scholar 

  16. Atwater H A and Polman A 2010 Nat. Mater. 9 205

    Article  Google Scholar 

  17. Nozik A J and Miller J 2010 Chem. Rev. 110 6443

    Article  Google Scholar 

  18. Nayak P K, Garcia-Belmonte G, Kahn A, Bisquert J and Cahen D 2012 Energy Environ. Sci. 5 6022

    Article  Google Scholar 

  19. Huang X, Han S, Huang W and Liu X 2013 Chem. Soc. Rev. 42 173

    Article  Google Scholar 

  20. Sawala N S, Chauhan A O, Palan C B and Omanwar S K 2015 Int. J. Lumin. Appl. 5 456

    Google Scholar 

  21. Sawala N S, Koparkar K A and Omanwar S K 2015 Int. J. Lumin. Appl. 5 125

    Google Scholar 

  22. Tzeng H Y, Cheng B M and Chen T M 2007 J. Lumin. 122 917

    Article  Google Scholar 

  23. Moine B, Beauzamy L, Gredin P, Wallez G and Labeguerie J 2008 Opt. Mater. 30 1083

    Article  Google Scholar 

  24. Beauzamy L, Moine B and Gredin P P 2007 J. Lumin. 127 568

    Article  Google Scholar 

  25. Zhang H P, Lü M K, Yang Z S, Xiu Z L, Zhou G J, Wang S F, Zhou Y Y and Wang S M 2006 J. Alloys Compd. 426 384

    Article  Google Scholar 

  26. Zhang H, Lü M, Xiu Z, Wang S, Zhou G, Zhou Y, Wang S, Qiu Z and Zhang A 2007 Mater. Res. Bull. 42 1145

    Article  Google Scholar 

  27. Busca G, Ricchiardi G, Sam D S H and Volta J C 1994 , J. Chem. Soc. Faraday Trans. 90 1161

    Article  Google Scholar 

  28. Chiu Z W, Hsiao Y J, Fang T H and Ji L W 2014 J. Sol-Gel Sci. Technol. 69 299

    Article  Google Scholar 

  29. Paques-Ledent M T. 1975, Chem. Phys. Lett. 35 375

    Article  Google Scholar 

  30. Singh R and Dhoble S J 2011 Bull. Mater. Sci. 34 557

    Article  Google Scholar 

  31. Srivastava A M and Beers W W 1997 J. Lumin. 71 285

    Article  Google Scholar 

  32. Feofilov S P, Zhou Y, Seo H J, Jeong J Y, Keszler D A and Meltzer R S 2006 Phys. Rev. B 74 085101

    Article  Google Scholar 

  33. Fu Y, Zhang G, Qi Z, Wu W and Shi C 2007 J. Lumin. 124 370

    Article  Google Scholar 

  34. Nie Z G, Zhang J H, Zhang X, Lu S Z, Ren X G and Zhang G B 2007 J. Solid State Chem. 180 2933

    Article  Google Scholar 

  35. Qian M, Yongqing M, Shibing Q, Dandan W, Ganhong Z, Mingzai W and Guang L 2012 J. Rare Earths 30 426

    Article  Google Scholar 

  36. Dean J A 1996 Lange’s handbook of chemistry (New York: Mcgraw-Hill Inc.) ISBN 0-07-016384-7

  37. Sawala N S, Bajaj N S and Omanwar S K 2016 Infrared Phys. Technol. 76 271

    Article  Google Scholar 

  38. Sawala N S, Koparkar K A, Bajaj N S and Omanwar S K 2016 Optik-Int. J. Light Electron Opt. 127 4375

    Article  Google Scholar 

  39. Zhu W L, Maa Y Q, Zhai C, Yang K, Zhang X, Wua D D, Li G and Zheng G H 2011 Opt. Mater. 33 1162

    Article  Google Scholar 

  40. Wei X T, Huang S, Chen Y H, Guo C X, Yin M and Xu W 2010 J. Appl. Phys. 107 103107

    Article  Google Scholar 

Download references

Acknowledgement

Niraj S Sawala is thankful to the Chairman, FIST-DST Project, SGBA University, Amravati (MH) 444602, India, for providing XRD facility for this work. The author is also thankful to Dr M Krishnan (Head, GCTL), Dr M Goswami (GCTL) and Dr P Nandi (GCTL, BARC, Mumbai (MH), India) for providing facility of an FLS980 spectrophotometer to study PL in NIR range.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N S Sawala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawala, N.S., Koparkar, K.A., Bajaj, N.S. et al. Near-infrared spectral downshifting in Sr(3−x)(VO4)2: x Nd3+ phosphor. Bull Mater Sci 39, 1625–1629 (2016). https://doi.org/10.1007/s12034-016-1313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1313-9

Keywords

Navigation