Skip to main content
Log in

Photocurrent analysis of AgIn5S8 crystal

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The photocurrent (PC) spectrum of AgIn5S8 crystal consists of a single peak, which provides to determine the bandgap energy by applying the Moss rule. The temperature dependence of the bandgap energy was also calculated. The PC dramatically increased by pre-illumination with light having wavelength corresponding to the bandgap of AgIn5S8. The temperature-dependent PC of the sample was measured at different temperatures from 80 to 300 K and the PC spectrum consisted a single broad peak. Thermal quenching of the PC was observed to start at ∼105 K and the PC completely quenched at ∼180 K. The quenching mechanism was discussed in terms of the two-centre model. The height of the PC peak rised linearly with applied voltage up to 5.0 V under constant intensity of light. Similarly, the dark current–voltage characteristics consisted of a single region dominating an ohmic behaviour, and no space charge limited region was apparent at various temperatures up to 20 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Usujima A, Takeuchi S, Endo S and Irie T 1981 Jpn. J. Appl. Phys. 20 L505

    Article  Google Scholar 

  2. Qasrawi A F, Kayed T S and Ercan I 2004 Mater. Sci. Eng. B-Adv. 113 73

    Article  Google Scholar 

  3. Delgado G E and Mora A J 2009 Chalcogenide Lett. 6 635

    Google Scholar 

  4. Orlova N S, Bodnar I V and Kudritskaya E A 1998 Cryst. Res. Technol. 33 37

    Article  Google Scholar 

  5. Paorici C, Zanotti L, Romeo N, Sberveglieri G and Tarricone L 1977 Mat. Res. Bull. 12 1207

    Article  Google Scholar 

  6. Qasrawi A F and Gasanly N M 2001 Cryst. Res. Tech. 36 457

    Article  Google Scholar 

  7. Lee S J, Kim J E and Park H Y 2003 Jpn. J. Appl. Phys. 42 3337

    Article  Google Scholar 

  8. Lin L H, Wu C C and Lee T C 2007 Cryst. Growth Des. 7 2725

    Article  Google Scholar 

  9. Sinha M M, Ashdhir P, Gupta H C and Tripathi P P 1995 Phys. Status Solidi B 187 K33

    Article  Google Scholar 

  10. Yao P, Wei D, Zhao X, Kang S Z, Li X and Mu J 2011 Adv. Mat. Res. 239–242 3302

    Article  Google Scholar 

  11. Damaskin I A, Pyshkin S I, Radautsan S I and Tezlevan V E 1973 J. Exp. Theor. Phys. Lett. 18 239

    Google Scholar 

  12. Gasanly N M, Serpenguzel A, Aydinli A, Gurlu O and Yilmaz I 1999 J. Appl. Phys. 85 3198

    Article  Google Scholar 

  13. Cheng K W and Wang S C 2009 Sol. Energ. Mat. Sol. C 93 307

    Article  Google Scholar 

  14. Bodnar I V, Kudritskaya E A, Polushina I K, Rud V Y. and Rud Yu V 1998 Semiconductors 32 933

    Article  Google Scholar 

  15. Bodnar I V, Gremenok V F, Rud V Y. and Rud Yu V 1999 Semiconductors 33 740

    Article  Google Scholar 

  16. Lai C H, Chiang C Y, Lin P C, Yang K Y, Hua C C and Lee T C 2013 ACS Appl. Mater. Interfaces 5 3530

    Article  Google Scholar 

  17. Bube R H 1960 Photoconductivity of solids (New York: John Wiley & Sons Inc.)

    Google Scholar 

  18. Woods J 1958 J. Electronics Control 5 417

    Article  Google Scholar 

  19. Konovalov I, Makhova L and Roussak L 2009 Phys. Status Solidi A 206 1067

    Article  Google Scholar 

  20. Ozdemir S, Bucurgat M and Firat T 2014 J. Alloy Compd. 611 7

    Article  Google Scholar 

  21. Moss T S 1952 Photoconductivity in the elements (London: Butterworths)

    Google Scholar 

  22. Varshni Y P 1967 Physica (Utrecht) 34 149

    Article  Google Scholar 

  23. Bodnar I V, Karoza A G, Korzun B V and Smirnova G F 1981 Inorg. Mater. 17 152

    Google Scholar 

  24. Rose A 1978 Concepts in photoconductivity and allied problems (New York: Krieger Publishing)

    Google Scholar 

  25. Bube R H 1992 Photoelectronic properties of semiconductors 1st edn (Cambridge: Cambridge University Press)

    Google Scholar 

  26. Jimenez J, Hernandez P, de Saja J A and Bonnafé J 1987 Phys. Rev. B 35 3832

    Article  Google Scholar 

  27. Jimenez J, Gonzales M A, Hernandez P, de Saja J A and Bonnafé J 1985 J. Appl. Phys. 57 1152

    Article  Google Scholar 

  28. Stulen R H and Ascarelli G 1977 Phys. Rev. B 15 1161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MAHMUT BUCURGAT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BUCURGAT, M., OZDEMIR, S. & FIRAT, T. Photocurrent analysis of AgIn5S8 crystal. Bull Mater Sci 39, 1521–1529 (2016). https://doi.org/10.1007/s12034-016-1302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1302-z

Keywords

Navigation