Advertisement

Bulletin of Materials Science

, Volume 39, Issue 6, pp 1427–1434 | Cite as

Effect of spin polarization on the structural properties and bond hardness of Fe x B (x = 1, 2, 3) compounds first-principles study

  • AHMED GUEDDOUHEmail author
  • BACHIR BENTRIA
  • IBN KHALDOUN LEFKAIER
  • YAHIA BOUROUROU
Article

Abstract

In this paper, spin and non-spin polarization (SP, NSP) are performed to study structural properties and bond hardness of Fe x B (x = 1, 2, 3) compounds using density functional theory (DFT) within generalized gradient approximation (GGA) to evaluate the effect of spin polarization on these properties. The non-spin-polarization results show that the non-magnetic state (NM) is less stable thermodynamically for Fe x B compounds than spin-polarization by the calculated cohesive energy and formation enthalpy. Spin-polarization calculations show that ferromagnetic state (FM) is stable for Fe x B structures and carry magnetic moment of 1.12, 1.83 and 2.03 μB in FeB, Fe2B and Fe3B, respectively. The calculated lattice parameters, bulk modulus and magnetic moments agree well with experimental and other theoretical results. Significant differences in volume and in bulk modulus were found between the ferromagnetic and non-magnetic cases, i.e., 6.8, 32.8%, respectively. We predict the critical pressure between ferromagnetic and non-magnetic phases. The model for hardness calculation using Mulliken population coupled to semi-empirical hardness theory proved effective in hardness prediction for the metal borides which agree well with the experimental values. These results would help to gain insight into the spin-polarized effect on the structural and bond hardness.

Keywords

Iron boride DFT spin polarized critical pressure Mulliken population bond hardness. 

References

  1. 1.
    Goldschmidt H J 2013 Interstitial alloys (London: Butterworths, Springer) p 5 Google Scholar
  2. 2.
    Chatterjee-Fisher R 1989 Boriding and diffusion metallizing. In Surface modification technologies (ed) T S Sundarshan (New York: Marcel Dekker Inc.) p 567, Chap. 8Google Scholar
  3. 3.
    Mohn P, Schwarz K and Wagner D 1991 Phys. Rev. B 43 3318CrossRefGoogle Scholar
  4. 4.
    Kneller E and Khan Y 1987 Z. Metallkde. 78 825Google Scholar
  5. 5.
    Meneses-Amador A, Campos-Silva I, Martínez-Trinidad J, Panier S, Figueroa-Lopez U and Torres-Hernández A 2013 Surf. Coat. Technol. 215 285CrossRefGoogle Scholar
  6. 6.
    Rodríguez-Castro G, Campos-Silva I, Chávez-Gutiérrez E, Martinez-Trinidad J, Hernández-Sanchez E and Torres-Hernández A 2013 Surf. Coat. Technol. 215 291CrossRefGoogle Scholar
  7. 7.
    Çalik A, Karakaş M S, Uçar N and Aytar Ö B 2012 J. Magn. 17 96CrossRefGoogle Scholar
  8. 8.
    Xiao B, Xing J D, Ding S F and Su W 2008 Phys. B 403 1723CrossRefGoogle Scholar
  9. 9.
    Zhou C T, Xing J D, Xiao B, Feng J, Xie X J and Chen Y H 2009 Comput. Mater. Sci. 44 1056CrossRefGoogle Scholar
  10. 10.
    Mulliken R S 1955 J. Chem. Phys. 23 1833CrossRefGoogle Scholar
  11. 11.
    Brown P J and Cox J L 1971 Philos. Mag. 23 705CrossRefGoogle Scholar
  12. 12.
    Perkins R S and Brown P J 1974 J. Phys. F 4 906CrossRefGoogle Scholar
  13. 13.
    Joyner D J, Johnson O and Hercules D M 1980 J. Am. Chem. Soc. 102 1910CrossRefGoogle Scholar
  14. 14.
    Guangwei Li and Dingsheng Wangi 1989, J. Phys. Condens. Matter 1 1799CrossRefGoogle Scholar
  15. 15.
    Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864CrossRefGoogle Scholar
  16. 16.
    Kohn W and Sham L J 1965 Phys. Rev. A 137 1697CrossRefGoogle Scholar
  17. 17.
    Kohn W and Sham L J 1965 Phys. Rev. A 140 1133CrossRefGoogle Scholar
  18. 18.
    Kohn W 1999 Rev. Mod. Phys. 71 01694CrossRefGoogle Scholar
  19. 19.
    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Quantum Chem. 77 895CrossRefGoogle Scholar
  20. 20.
    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Condens. Matter 14 2717CrossRefGoogle Scholar
  21. 21.
    Xu Y W and Wang H M 2008 J. Alloys Compd. 457 239CrossRefGoogle Scholar
  22. 22.
    Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533CrossRefGoogle Scholar
  23. 23.
    Monkhorst H J and Pack J D 1976 Phys. Rev. B 135 188Google Scholar
  24. 24.
    Murphy K A and Herschkowitz N 1973 Phys. Rev. B 7 11CrossRefGoogle Scholar
  25. 25.
    Takacs L, Cadeville M C and Vincze I 1975 J. Phys. F: Met. Phys. 5 800CrossRefGoogle Scholar
  26. 26.
    Stoner E C and Wohlfahrt E P 1948 Phil. Trans. Roy. Soc. A 240 599CrossRefGoogle Scholar
  27. 27.
    Bjurstroem T and Kemi A 1933 Mineral Geol. A 11 1Google Scholar
  28. 28.
    Ching W Y, Yong-Nian X., Harmon B N, Jun Ye and Leung T C 1990 Phys. Rev. B 42 7CrossRefGoogle Scholar
  29. 29.
    Kittel C 1996 Introduction to solid state physics (New York: Wiley) 7th ednGoogle Scholar
  30. 30.
    Lee P H, Xiao Z R, Chen K L, Chen Y, Kao S W and Chin T S 2009 Phys. B 404 1989CrossRefGoogle Scholar
  31. 31.
    Xiao B, Feng J, Zhou C T, Xing J D, Xie X J, Cheng Y H and Zhou R 2010 Phys. B 405 1274CrossRefGoogle Scholar
  32. 32.
    Havinga E E, Damsma H and Hokkeling P 1972 J. Less-Common Metals 27 169CrossRefGoogle Scholar
  33. 33.
    Liang Y J and Che Y 1993 Data handbook of inorganic compound thermodynamics (Shenyang: North Eastern University Press)Google Scholar
  34. 34.
    Liu-Hui Li, Wei-Li Wang, Liang Hu and Bing-Bo Wei 2014, Intermetallics 46 211CrossRefGoogle Scholar
  35. 35.
    Shein I R, Medvedeva N I and Ivanovskii A L 2006 Phys. B 37 1126Google Scholar
  36. 36.
    Gilman J J 1996 Mater. Sci. Eng. A 209 74CrossRefGoogle Scholar
  37. 37.
    Sanchez Portal D, Artacho E and Soler J M 1995 Solid State Commun. 95 685CrossRefGoogle Scholar
  38. 38.
    Pfrommer B, Cote G M, Louie S G and Cohen M L 1997 Comput. Phys. 131 133CrossRefGoogle Scholar
  39. 39.
    Šimůnek A and Vackář J 2006, Phys. Rev. Let. 96 085501Google Scholar
  40. 40.
    Zhang X, Luo X, Jiecai Han, Jinping Li and Wenbo Han 2008, Comput. Mater. Sci. 44 411CrossRefGoogle Scholar
  41. 41.
    Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 015502CrossRefGoogle Scholar
  42. 42.
    Culha O, Toparli M and Aksoy T 2009 Adv. Eng. Softw. 40 1140CrossRefGoogle Scholar
  43. 43.
    Campos-Silva I, Martínez-Trinidad J, Doñu-Ruíz M A, Rodríguez-Castro G, Hernández-Sánchez E and Bravo-Bárcenas O 2011 Surf. Coat. Technol. 206 1809CrossRefGoogle Scholar
  44. 44.
    Brazhkin V V, Lyapin A G, Russell J and Hemley R J 2002 J. Phil. Mag. A 82 231CrossRefGoogle Scholar
  45. 45.
    Levine J B, Tolbert S H and Kaner R B 2009 Adv. Funct. Mater. 19 3519CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • AHMED GUEDDOUH
    • 1
    • 2
    Email author
  • BACHIR BENTRIA
    • 1
  • IBN KHALDOUN LEFKAIER
    • 1
  • YAHIA BOUROUROU
    • 3
  1. 1.Laboratoire de Physique des MatériauxUniversité Amar Telidji de LaghouatLaghouatAlgeria
  2. 2.Département de Physique, Faculté des SciencesUniversité A.B. Belkaid TlemcenTlemcenAlgeria
  3. 3.Modeling and Simulation in Materials Science LaboratoryUniversity of Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria

Personalised recommendations