Skip to main content
Log in

Electronic transport and magnetoresistivity of La0.4Bi0.1Ca0.5−x Sr x MnO3 (x = 0.1 and 0.2)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Electrical resistivity and magnetoresistive behaviour of bismuth-substituted lanthanum manganites La0.4Bi0.1Ca0.5−x Sr x MnO3 (x = 0.1 and 0.2) were systematically studied by varying the temperature from 2 to 300 K and the magnetic field up to 12 T. The samples were found to crystallize in rhombohedral structure and their morphology shows near-spherical nanosize crystallites. Charge ordering was observed in both the samples under zero field conditions and corresponding transition temperature T CO was found to decrease with the increase of x. Resistivity measurements with magnetic field also showed suppression of magnetoresistivity (MR) with the increase of x and the maximum MR was found to be 98 and 93% for x = 0.1 and 0.2, respectively, at 10 T. In the high-temperature domain, the electronic transport was observed to be dominated by the variable range hopping mechanism for both the samples, whereas in the low-temperature domain the electrical conduction of x = 0.1 sample was observed to be contributed by various other electron scattering mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao C N R, Arulraj A, Cheetham A K and Raveau B 2000 J. Phys.: Condens. Matter 12 83

    Google Scholar 

  2. Levy P, Parisi F, Polla G, Vega D, Leyva G and Lanza H 2000 Phys. Rev. B 62 6437

    Article  Google Scholar 

  3. Attfield J P 1998 Chem. Mater. 10 3239

    Article  Google Scholar 

  4. Rodriguez-Martinez L M and Attfield J P 1998 Phys. Rev. B 58 2426

    Article  Google Scholar 

  5. Rao C N R and Raveau B 1998 Colossal magnetoresistance, charge ordering and related properties of manganese oxides (Singapore: World Scientific)

  6. Radaelli P G, Cox D E, Marezio M and Cheong S -W 1997 Phys. Rev. B 55 3015

    Article  Google Scholar 

  7. Radaelli P G, Cox D E, Marezio M, Cheong S -W Schiffer P E and Ramirez A P Phys. Rev. Lett. 75 4488

  8. Das A, Babu P D, Chatterjee S and Nigam A K 2004 Phys. Rev. B 70 224404

    Article  Google Scholar 

  9. Jirák Z, Hejtmánek J, Knížek K, Maryško M, Šima V and Sonntag R 2000 J. Magn. Magn. Mater. 217 113

    Article  Google Scholar 

  10. Kajimoto R, Yoshizawa H, Kawano H, Kuwahara H, Tokura Y, Ohoyama K and Ohashi M 1999 Phys. Rev. B 60 9506

    Article  Google Scholar 

  11. Kawano H, Kajimoto R, Yoshizawa H, Tomioka Y, Kuwahara H and Tokura Y 1997 Phys. Rev. Lett. 78 4253

    Article  Google Scholar 

  12. Damay F, Martin C, Maignan A, Hervieu M, Raveau B, Jirak Z, Andre G and Bouree F 1999 Chem. Mater. 11 536

    Article  Google Scholar 

  13. Krupicka S, Marysko M, Jirak Z and Hejtmanek J 1999 J. Magn. Magn. Mater. 206 45

    Article  Google Scholar 

  14. Autret C, Martin C, Hervieu M, Maignan A and Raveau B 2003 Chem. Mater. 15 1886

    Article  Google Scholar 

  15. Moritomo Y, Kuwahara H, Tomioka Y and Tokura Y 1997 Phys. Rev. B 55 7549

    Article  Google Scholar 

  16. Yu R C, Tang J, Yao L D, Matsushita A, Yu Y, Li F Y and Jin C Q 2005 J. Appl. Phys. 97 083910

    Article  Google Scholar 

  17. Babu P D, Das A and Paranjpe S K 2001 Solid State Commun. 118 91

    Article  Google Scholar 

  18. Sundaresan A, Paulose P L, Mallik R and Sampathkumaran E V 1998 Phys. Rev. B 57 2690

    Article  Google Scholar 

  19. Dhiman I, Das A, Mishra P and Panicker L 2008 Phys. Rev. B 77 094440

    Article  Google Scholar 

  20. Garcia-Munoz J L, Fronterea C, Aranda M A G, Llobet A and Ritter C 2001 Phys. Rev. B 63 064415

    Article  Google Scholar 

  21. Li R, Qu Z and Fang J 2011 Physica B: Condens. Matter 406 1312

    Article  Google Scholar 

  22. Xia Z C, Wu Y Y, Zhu G F, Hu A Z, Feng X N, Wang Y, Xiong C S, Yuan S L and Tang C Q 2008 J. Magn. Magn. Mater. 320 368

    Article  Google Scholar 

  23. Zhang R R, Kuang G L, Zhao B C and Sun Y P 2010 Solid State Commun 150 209

    Article  Google Scholar 

  24. Ahmed A M 2004 Physica B 352 330

    Article  Google Scholar 

  25. Pai M R, Wani B N and Bharadwaj S R 2006 J. Indian Chem. Soc. 83 336

    Google Scholar 

  26. Munirathinam B, Krishnaiah M, Devarajan U, Esakki Muthu S and Arumugam S 2012 J. Phys. Chem. Solids 73 925

    Article  Google Scholar 

  27. Desgreniers S and Lagarec K 1998 J. Appl. Crystallogr. 31 109

    Article  Google Scholar 

  28. Neumeier J J, Hundley M F, Thompson J D and Heffner R H 1995 Phys. Rev. B 52 7006

    Article  Google Scholar 

  29. Hwang H Y, Cheong S W, Radaelli P G, Marezio M and Batlogg B 1995 Phys. Rev. Lett. 75 914

    Article  Google Scholar 

  30. Shannon R D 1976 Acta Crystallogr. Section A 32 751

    Article  Google Scholar 

  31. Wang X, Pan I Y W, Cui Q L, Zhang J, Gao W and Zou G T 2001 J. Solid State Chem. 160 307

    Article  Google Scholar 

  32. Zhao Y D, Park J., Jung R J, Noh H J and Oh S J 2004 J. Magn. Magn. Mater. 280 404

    Article  Google Scholar 

  33. Cheng Z X, Silver T M, Li A H, Wang X L and Kimura H 2004 J. Magn. Magn. Mater. 283 143

    Article  Google Scholar 

  34. Venkataiah G and Venugopal Reddy P 2005 Solid State Commun 136 114

    Article  Google Scholar 

  35. Rozenberg E, Auslender M, Felner I and Gorodetsky G 2000 J. Appl. Phys. 88 2578

    Article  Google Scholar 

  36. Auslender M, Kar’kin A E, Rozenberg E and Gorodetsky G 2001 J. Appl. Phys. 89 6639

    Article  Google Scholar 

  37. Sarkar T, Ghosh B, Chatterji T and Raychaudhuri A K 2008 Phys. Rev. B 77 235112

    Article  Google Scholar 

  38. Lalitha G and Venugopal Reddy P 2010 J. Alloys Compd. 494 476

    Article  Google Scholar 

  39. Pekala M, Drozd V, Fagnard J F, Vanderbemden P. and Ausloos M 2009 J. Appl. Phys. 105 013923

    Article  Google Scholar 

  40. Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P SUBHASHINI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SUBHASHINI, P., MUNIRATHINAM, B., KRISHNAIAH, M. et al. Electronic transport and magnetoresistivity of La0.4Bi0.1Ca0.5−x Sr x MnO3 (x = 0.1 and 0.2). Bull Mater Sci 38, 1449–1455 (2015). https://doi.org/10.1007/s12034-015-1036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1036-3

Keywords

Navigation