Skip to main content
Log in

Red luminescence from ZnO : Cr3+ nanophosphors under visible excitation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

ZnO : Cr3+ (1 mol%) nanophosphor is synthesized by the wet chemical solution combustion method at the temperature of 400C. Powder X-ray diffraction results confirmed that Cr3+-doped and undoped ZnO nanophosphors exhibit hexagonal wurtzite structure. The average crystallite size calculated from Scherrer’s method is 25 nm for undoped and 14 nm for Cr3+-doped ZnO. The UV–visible absorption spectra shows red shift in Cr3+-doped ZnO. Photoluminescence studies of undoped ZnO show violet emission peak at 400 nm and blue emission peak at 447 nm. Cr3+-doped ZnO shows red emission peaks at 642, 694 and 746 nm, which are mainly attributed to spin forbidden transitions of 2Eg →\(^{4}\textit {A}_{2g}\) of Cr3+ ion in ZnO : Cr 3+ nanophosphor. Thermoluminescence (TL) studies recorded at a heating rate of 6C s −1 show two well-resolved glow peaks at 124 and 284C. It is found that the TL intensity increases with the gamma irradiation dose (500 Gy– 10 kGy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willander M, Nur O, Zhao Q X, Yang L, Lorenz M, Cao B, Zuniga-Perez J, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Mofo A C, Postels B, Waag A, Boukos N, Travlos A, Guinard J, Dang S and Le D 2009 Nanotechnology 20 332001

    Article  Google Scholar 

  2. Pauporte T, Lincot D, Viana B and Pelle F 2006 J. Appl. Phys. Lett. 89 233112

    Article  Google Scholar 

  3. Djurisic A B, Leung Y H, Tam K H, Hsu Y F, Ding L, Ge W K, Zhong Y C, Wong K S, Chan W K, Tam H L, Cheah K W, Kwok W M and Philips D L 2007 Nanotechnology 18 09570

    Article  Google Scholar 

  4. Xu P S, Sun Y M, Shi C S, Xu F Q and Pan H B 2003 Nucl. Instrum. Methods: Phys. Res. Sect. B 19 286

    Article  Google Scholar 

  5. Elilarassi R and Chandrasekaran G 2010 J. Optoelectron. Lett. 6 6

    Article  Google Scholar 

  6. Chaun R, Kumar A and Choudhary R 2011 J. Optoelectron. Biomater. 3 17

    Google Scholar 

  7. Murugadoss G 2012 J. Mater. Sci. Technol. 28 487

    Article  Google Scholar 

  8. Mazhdi M, Torkzadeh F and Mazhdi F M 2012 Int. J. Bioinorg. Hybrid Nanomater. 1 233

    Google Scholar 

  9. Yuhas B D, Zitoun D O, Pauzauskie P J, He R and Yang P 2006 Andew. Chem. Int. Ed. 45 420

    Article  Google Scholar 

  10. Sharma P K, Datta R K and Pandey A C 2010 J. Colloid Interface Sci. 345 149

    Article  Google Scholar 

  11. Gurkaynak T 2008 Altincekic and Boz I Bull. Mater. Sci. 31 619

    Article  Google Scholar 

  12. Pandiyarajan T and Karthikeyan B 2012 J. Nanopart. Res. 14 647

    Article  Google Scholar 

  13. Kumar P, Singh J, Parashar V, Singh K, Tiwari R S, Srivastava O N, Ramam K and Pandey A C 2012 Cryst. Eng. Commun. 14 1653

    Article  Google Scholar 

  14. Schneider L, Zaitsev S V, Jin W, Kompch A, Winterer M and Acet Bacher M 2009 Nanotechnology 20 135604

    Article  Google Scholar 

  15. Pan Z, Lu Y -Y and Liu F 2012 Nat. Mater. 11 58

    Article  Google Scholar 

  16. Premkumar H B, Sunitha D V, Nagabhushana H, Sharma S C, Nagabhushana B M, Rao J L, Gupta K and Chakradhar R P S 2012 J. Spectrochim. Acta Part A 96 154

    Article  Google Scholar 

  17. Hang, L, Zhioyong and Yan J 2011 Adv. Mater. Res. 306, 176

  18. Ristić M, Musić S, Ivanda M and Popović S 2005 J. Alloys Compd. 397 L1

    Article  Google Scholar 

  19. Tarwal N L, Jadhav P R, Vanalakar S A, Kalagi S S, Pawar R C, Shaikh J S, Mali S S, Dalavi D S, Shinde P S and Patil P S 2011 Powder Technol 8 185

    Article  Google Scholar 

  20. Liu F, Yan W, Chuang Y -J, Zhen Z, Xie J and Pan Z 2013 Sci. Rep. 3 1554

    Google Scholar 

  21. Ekambaram S, Iikubo Y and Kudo A 2006 J. Alloys Compd. 433 237

    Article  Google Scholar 

  22. Nagabhushana H, Nagabhushana B M, Kumar M, Premkumar H B, Shivakumara C and Chakradhar R P S 2010 Philos. Mag. 26 3567

    Article  Google Scholar 

  23. Mote V D, Huse V R and Dole B N 2012 World J. Condens. Matter Phys. 2 208

    Article  Google Scholar 

  24. Fan L, Song H, Li T, Yu L, Liu Z, Pan G, Lei Y, Bai X, Wang T, Zheng Z and Kong X 2007 J. Lumin. Res. 14 647

    Google Scholar 

  25. Shionoya S and Yen W H 1997 Phosphor handbook by Phosphor Research Society (Boca Raton, FL: CRC Press)

  26. Jagannatha Reddy A, Kokila M K, Nagabhushana H, Chakradhar R P S, Shivakumara C, Rao J L and Nagabhushana B M 2011 J. Alloys Compd. 509 5349

    Article  Google Scholar 

  27. Gupta A, Kumar S and Bhatti H S 2010 J. Mater. Sci.: Mater. Elect. 21 765

    Google Scholar 

  28. Jagannatha Reddy A 2012 Structural, luminescence and EPR studies of transition metal and rare earth ion doped zinc oxide nanomaterials PhD thesis (Bangalore University) Chapter 4, p 130

  29. Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943

    Article  Google Scholar 

  30. Lee J D 2012 Concise inorganic chemistry(Wiley India) 5th edn, p 960

  31. Cruz-Vazquez C, Orante-Barron V R, Grijalva-Monteverde H, Casta V M and Bernal R 2007 J. Mater. Lett. 61 1097

    Article  Google Scholar 

  32. Secu C E and Sima M 2009 Opt. Mater. 3 876

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M K KOKILA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PUSHPA, N., KOKILA, M.K., NAGABHUSHANA, B.M. et al. Red luminescence from ZnO : Cr3+ nanophosphors under visible excitation. Bull Mater Sci 38, 1359–1365 (2015). https://doi.org/10.1007/s12034-015-1021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1021-x

Keywords

Navigation