Skip to main content

Advertisement

Log in

Factors affecting the pH and electrical conductivity of MgO–ethylene glycol nanofluids

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The pH and electrical conductivity are important properties of nanofluids that have not been widely studied, especially with regard to temperature and ultrasonication energy. To study the factors that affect the pH and electrical conductivity of magnesium oxide–ethylene glycol (MgO–EG) nanofluid, the effects of temperature, volume fraction, particle size and ultrasonication energy were investigated. Two different sizes of MgO were dispersed in EG base fluid up to the volume fraction of 3%, and the pH and electrical conductivity were monitored between the temperatures of 20 and 70C. Characterization by transmission electron microscopy and size analyses revealed the morphology and sizes of the nanoparticle samples. The pH values dropped consistently with the increase of temperature, while electrical conductivity value increased with the increase of temperature. The experimental result showed that the increase in the MgO volume fraction increased both the pH and electrical conductivity values of the MgO–EG nanofluid. There was no recognizable influence of ultrasonication energy density on the pH and electrical conductivity of the nanofluid; therefore, it was concluded that temperature, volume fraction and particle size are the predominant factors affecting both the pH and electrical conductivity of MgO–EG nanofluid within the present experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peyghambarzadeh S M, Hashemabadi S H, Jamnani M S and Hoseini S M 2011 Appl. Therm. Eng. 31 1833

    Article  Google Scholar 

  2. Zamzamian A, Oskouie S N, Doosthoseini A, Joneidi A and Pazouki M 2011 Exp. Therm. Fluid Sci. 35 495

    Article  Google Scholar 

  3. Mahbubul I M, Khaleduzzaman S S, Saidur R and Amalina M A 2014 Int. J. Heat Mass Transf. 73 118

    Article  Google Scholar 

  4. Chandrasekar M, Suresh S and Bose A C 2010 Exp. Therm. Fluid Sci. 34 210

    Article  Google Scholar 

  5. Godson L, Raja B, Lal D M and Wongwises S 2010 Exp. Heat Transf. 23 317

    Article  Google Scholar 

  6. Kumaresan V and Velraj R 2012 Thermochim. Acta 545 180

    Article  Google Scholar 

  7. Nieh H -M, Teng T -P and Yu C -C 2014 Int. J. Therm. Sci. 77 252

    Article  Google Scholar 

  8. żyła G W. A a. C. M 2013 J. Exp. Nanosci. 10 1

    Google Scholar 

  9. Kole M and Dey T K 2011 Int. J. Therm. Sci. 50 1741

    Article  Google Scholar 

  10. Rashin M N and Hemalatha J 2013 Exp. Therm. Fluid Sci. 48 67

    Article  Google Scholar 

  11. Prasher R, Song D, Wang J and Phelan P 2006 Appl. Phys. Lett. 89 1

    Google Scholar 

  12. Yu W and Xie H 2012 J. Nanomater. 2012 1

    Google Scholar 

  13. Lee D, Kim J and Kim B 2006 J. Phys. Chem. B 110 4323

    Article  Google Scholar 

  14. Degen A and Kosec M 2000 J. Eur. Ceram. Soc. 20 667

    Article  Google Scholar 

  15. Ghadimi A and Metselaar I 2013 Exp. Therm. Fluid Sci. 51 1

    Article  Google Scholar 

  16. Wamkam C T, Opoku M K, Hong H and Smith P 2011 J. Appl. Phys. 109 024305

    Article  Google Scholar 

  17. Timofeeva E V, Smith D S, Yu W, France D M, Singh D and Routbort J L 2010 Nanotechnology 21 215703

    Article  Google Scholar 

  18. Xian-Ju W and Xin-Fang L 2009 Chin. Phys. Lett. 26 1

    Article  Google Scholar 

  19. Li X F, Zhu D S, Wang X J, Wang N, Gao J W and Li H 2008 Thermochim. Acta 469 98

    Article  Google Scholar 

  20. Li X, Zhu D and Wang X 2007 J. Colloid Interface Sci. 310 456

    Article  Google Scholar 

  21. Huang J, Wang X, Long Q, Wen X, Zhou Y and Li L 2009 Symposium on photonics and optoelectronics (Wuhan: IEEE eXpress Conference Publishing) p 1

  22. Wang X, Li X and Yang S 2009 Energy Fuels 23 2684

    Article  Google Scholar 

  23. Younes H, Christensen G, Luan X, Hong H and Smith P 2012 J. Appl. Phys. 111 064308

    Article  Google Scholar 

  24. Konakanchi H, Vajjha R S, Chukwu G and Das D K 2014 Heat Trans. Eng.

  25. Prasher R, Evans W, Meakin P, Fish J, Phelan P and Keblinski P 2006 Appl. Phys. Lett. 89 143119

    Article  Google Scholar 

  26. Charkraborty S and Padhy S 2008 ACS Nano 2 2029

    Article  Google Scholar 

  27. Rubio-Hernández F J, Ayúcar-Rubio M F, Vlaázquez-Navarro J F and Galindo-Rosales F J 2006 J. Colloid Interface Sci. 298 967

    Article  Google Scholar 

  28. Sarojini K G K, Manoj S V, Singh P K, Pradeep T and Das S K 2013 Colloids Surf. A: Physicochem. Eng. Asp. 417 39

    Article  Google Scholar 

  29. Ganguly S, Sikdar S and Basu S 2009 Powder Technol 196 326

    Article  Google Scholar 

  30. Modesto-lopez L B and Biswas P 2010 J. Aerosol Sci. 41 790

    Article  Google Scholar 

  31. Baby T T and Ramaprabhu S 2010 J. Appl. Phys. 108 124308

    Article  Google Scholar 

  32. Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M and Reynaud C 2008 J. Appl. Phys. 103 094309

    Article  Google Scholar 

  33. Cruz R C D, Reinshagen J, Oberacker R, Segadães A M and Hoffmann M J 2005 J. Colloid Interface Sci. 286 579

    Article  Google Scholar 

  34. Maxwell J C 1873 Electricity and magnetism (Oxford: Clarendon Press)

  35. Ohshima H 2003 Colloids Surf. A: Physicochem. Eng. Asp. 222 207

    Article  Google Scholar 

  36. White S B, Shih A J and Pipe K P 2011 Nanoscale Res. Lett. 6 346

    Article  Google Scholar 

  37. Nguyen C T, Roy G, Gauthier C and Galanis N 2007 Appl. Therm. Eng. 27 1501

    Article  Google Scholar 

  38. Ma H B, Wilson C, Borgmeyer B, Park K and Yu Q 2006 Appl. Phys. Lett. 88 1

    Google Scholar 

  39. Nguyen C T, Roy G, Lajoie P R and Maiga S E B 2005 Proceedings of 3rd IASME/WSEAS international conference on heat transfer, thermal engineering and environment (Greece: Corfu) pp. 160–165

  40. Andablo-Reyes E, Hidalgo-Álvarez R and Vicente J 2011 Soft Matter 7 880

    Article  Google Scholar 

  41. Yao G Z, Yap F F, Chen G, Li W H and Yeo S H 2002 Mechatronics 12 963

    Article  Google Scholar 

  42. Xiang-Qi W and Arun S M 2008 Brazilian J. Chem. Eng. 24 631

    Google Scholar 

  43. Jain P, El-Sayed I and El-Sayed M 2007 Nano Today 2 18

    Article  Google Scholar 

  44. Sun X et al 2008 Nano Res 1 203

    Article  Google Scholar 

  45. Pankhurst Q A, Connolly J, Jones S K and Dobson J 2003 J. Phys. D: Appl. Phys. 36 R167

    Article  Google Scholar 

  46. Gupta A K and Gupta M 2005 Biomaterials 26 3995

    Article  Google Scholar 

  47. Xie H, Yu W and Chen W 2010 J. Exp. Nanosci. 5 463

    Article  Google Scholar 

  48. Esfe M H, Saedodin S, Bahiraei M, Toghraie D, Mahian O and Wongwises S 2014 J. Therm. Anal. Calorim. (Springer) p. 287

  49. Adio S A, Sharifpur M and Meyer J P 2015 Heat Transf. Eng. 36 1241

    Article  Google Scholar 

  50. Timofeeva E V et al 2007 Phys. Rev. E 76 1

    Article  Google Scholar 

  51. Wong K -F V and Kurma T 2008 Nanotechnology 19 345702

    Article  Google Scholar 

  52. Li Y, Zhou J, Tung S, Schneider E and Xi S 2009 Powder Technol 196 89

    Article  Google Scholar 

  53. Mastuli M S, Ansari N S, Nawawi M A and Mahat A M 2012 APCBEE Procedia 3 93

    Article  Google Scholar 

  54. Suryanarayana C and Norton M G 1998 X-ray diffraction: A practical approach (New York: Plenum Press)

  55. Samal S, Satpati B and Chaira D 2010 J. Alloys Compd. 504 S389

    Article  Google Scholar 

  56. Kathrein H and Freund F 1983 J. Phys. Chem. Solids 44 177

    Article  Google Scholar 

  57. Wilson I O 1981 IEE Proc. A: Phys. Sci. Meas. Instrum. Manage Educ. Rev. 128 159

    Google Scholar 

  58. Posner J D 2009 Mech. Res. Commun. 36 22

    Article  Google Scholar 

  59. Carrique F, Ruiz-reina E, Arroyo F J and Delgado V 2006 J. Phys. Chem. B110 18313

    Article  Google Scholar 

  60. Minea A A and Luciu R S 2012 Microfluid. Nanofluid. 13 977

    Article  Google Scholar 

  61. Turner J 1976 Chem. Eng. Sci. 31 487

    Article  Google Scholar 

  62. Ram R, Gonz R, Chen Y and Alves E 2002 Nucl. Instr. Meth. Phys. B191 191

    Google Scholar 

  63. Ohshima H 2000 J. Colloid Interface Sci. 229 307

    Article  Google Scholar 

  64. Ohshima H 1999 J. Colloid Interface Sci. 212 443

    Article  Google Scholar 

  65. Ding J M and Keh H J 2001 J. Colloid Interface Sci. 236 180

    Article  Google Scholar 

  66. Kuwabara S 1959 J. Phys. Soc. Japan 14 527

    Article  Google Scholar 

  67. Ruiz-reina E 2007 J. Phys. Chem. C111 141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MOHSEN SHARIFPUR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ADIO, S.A., SHARIFPUR, M. & MEYER, J.P. Factors affecting the pH and electrical conductivity of MgO–ethylene glycol nanofluids. Bull Mater Sci 38, 1345–1357 (2015). https://doi.org/10.1007/s12034-015-1020-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1020-y

Keywords

Navigation