Skip to main content
Log in

Transformation from amorphous to nano-crystalline SiC thin films prepared by HWCVD technique without hydrogen dilution

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) thin films were deposited on Si(111) by the hot wire chemical vapour deposition (HWCVD) technique using silane (SiH4) and methane (CH4) gases without hydrogen dilution. The effects of SiH4 to CH4 gas flow ratio (R) on the structural properties, chemical composition and photoluminescence (PL) properties of the films deposited at the different gas flow ratios were investigated and compared. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra revealed a structural transition from amorphous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering confirmed the multi-phased nature of the films. Auger electron spectroscopy showed that the carbon incorporation in the film structure was strongly dependent on the gas flow ratio. A similar broad visible room-temperature PL with two peaks was observed for all SiC films. The main PL emission was correlated to the band to band transition in uniform a-SiC phase and the other lower energy emission was related to the confined a-Si : H clusters in a-SiC matrix. SiC nano-crystallites exhibit no significant contribution to the radiative recombination

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamakawa Y, Matsumoto Y, Hirata G and Okamoto H 1989 MRS Proc 164 291

    Article  Google Scholar 

  2. Matsunami H and Kimoto T 1997 Mater. Sci. Eng. R20 125

    Article  Google Scholar 

  3. Rajagopalan T 2003 J. Appl. Phys. 94 5252

    Article  Google Scholar 

  4. Komura Y, Tabata A, Narita T, Kondo A and Mizutani T 2006 J. Non-Cryst. Solids 352 1367

    Article  Google Scholar 

  5. Kerdiles S 2000 Appl. Phys. Lett. 76 2373

    Article  Google Scholar 

  6. Forhan N A E, Fantini M C A and Pereyra I 2004 J. Non-Cryst. Solids 338–340 119

    Article  Google Scholar 

  7. Nainaparampil J J and Zabinski S J 1999 J. Vac. Sci. Technol. A 17 909

    Article  Google Scholar 

  8. Komura Y, Tabata A, Narita T and Kondo A 2008 Thin Solid Films 516 633

    Article  Google Scholar 

  9. Swain B P and Dusane R O 2006 Mater. Chem. Phys. 99 240

    Article  Google Scholar 

  10. Gogoi P, Jha H S and Agarwal P 2010 Thin Solid Films 518 6818

    Article  Google Scholar 

  11. Kaneko T, Hosokawa Y, Suga T and Miyakawa N 2006 Microelectron. Eng. 83 41

    Article  Google Scholar 

  12. Chen T, Köhler F, Heidt A, Huang Y, Finger F and Carius R 2011 Thin Solid Films 519 4511

    Article  Google Scholar 

  13. Miyajima S, Irikawa J, Yamada A and Konagai M 2010 Appl. Phys. Lett. 97 023504

    Article  Google Scholar 

  14. Finger F, Astakhov O, Bronger T, Carius R, Chen T, Dasgupta A, Gordijn A, Houben L, Huang Y, Klein S, Luysberg M, Wang H and Xiao L 2009 Thin Solid Films 517 3507

    Article  Google Scholar 

  15. Klein S, Carius R, Finger F and Houben L 2006 Thin Solid Films 501 169

    Article  Google Scholar 

  16. Tabata A and Komura Y 2007 Surf. Coat. Technol. 201 8986

    Article  Google Scholar 

  17. Zhao Q, Li J C, Zhou H, Wang H, Wang B and Yan H 2004 J. Cryst. Growth 260 176

    Article  Google Scholar 

  18. Mao H -Y, Wuu D -S, Wu B -R, Lo S -Y, Hsieh H -Y and Horng R -H 2012 Thin Solid Films 520 2110

    Article  Google Scholar 

  19. Itoh T, Fujiwara T, Katoh Y, Fukunaga K and Nonomura S 2002 J. Non-Cryst. Solids 880 299–302

    Google Scholar 

  20. Swain B P and Dusane R O 2006 Microelectron. Eng 83 55

    Article  Google Scholar 

  21. Tabata A, Komura Y, Narita T and Kondo A 2009 Thin Solid Films 517 3516

    Article  Google Scholar 

  22. Tabata A and Mori M 2008 Thin Solid Films 516 626

    Article  Google Scholar 

  23. Tabata A, Hoshide Y and Kondo A 2010 Mater. Sci. Eng. B 175 201

    Article  Google Scholar 

  24. Hoshide Y, Komura Y, Tabata A, Kitagawa A and Kondo A 2009 Thin Solid Films 517 3520

    Article  Google Scholar 

  25. Klug H P and Alexander L E 1974 X-ray diffraction procedures or polycrystalline and amorphous materials (New York: Wiley).

    Google Scholar 

  26. Hartel A M, Künle M, Löper P, Janz S and Bett A W 2010 Sol. Energy Mater Sol. Cells 94 1942

    Article  Google Scholar 

  27. Chew Rusli K, Yoon S F, Ahn J, Ligatchev V, Teo E J, Osipowicz T and Watt F 2002 J. Appl. Phys. 92 2937

    Article  Google Scholar 

  28. Ritikos R, Siong C C, Ab Gani S M, Muhamad M R and Rahman S A 2009 Jpn. J. Appl. Phys. 48 101301

    Article  Google Scholar 

  29. Yu W, Wang X, Lu W, Wang S, Bian Y and Fu G 2010 Physica B: Condens. Matter 405 1624

    Article  Google Scholar 

  30. Kaneko T, Nemoto D, Horiguchi A and Miyakawa N 2005 J. Cryst. Growth 275 e1097

    Article  Google Scholar 

  31. Vasin A V, Kolesnik S P, Konchits A A, Rusavsky A V, Lysenko V S, Nazarov A N, Ishikawa Y and Koshka Y 2008 J. Appl. Phys. 103 123710

    Article  Google Scholar 

  32. Smith J E, Brodsky M H, Crowder B L, Nathan M I and Pinczuk A 1971 Phys. Rev. Lett. 26 642

    Article  Google Scholar 

  33. Beeman D, Tsu R and Thorpe M F 1985 Phys. Rev. B 32 874

    Article  Google Scholar 

  34. Wang Y, Yue R and Liu L 2002 Appl. Surf. Sci. 193 138

    Article  Google Scholar 

  35. Cheng Q et al 2008 J. Phys. D: Appl. Phys. 41 055406

    Article  Google Scholar 

  36. Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095

    Article  Google Scholar 

  37. Ferrari A C and Robertson J 2004 Philos Trans. R. Soc. Lond. A 362 2477

    Article  Google Scholar 

  38. Guruvenket S, Azzi M, Li D, Szpunar J A, Martinu L and Klemberg-Sapieha J E 2010 Surf. Coat. Technol. 204 3358

    Article  Google Scholar 

  39. Rerbal K, Jomard F, Chazalviel J N, Ozanam F and Solomon I 2003 Appl. Phys. Lett 83 45

    Article  Google Scholar 

  40. Dunstan D J and Boulitrop F 1984 Phys. Rev. B 30 5945

    Article  Google Scholar 

  41. Estes M J and Moddel G 1996 Phys. Rev. B 54 14633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F SHARIATMADAR TEHRANI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TEHRANI, F.S. Transformation from amorphous to nano-crystalline SiC thin films prepared by HWCVD technique without hydrogen dilution. Bull Mater Sci 38, 1333–1338 (2015). https://doi.org/10.1007/s12034-015-1018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1018-5

Keywords

Navigation