Skip to main content
Log in

Synthesis of functionalized pyrazolopyran derivatives: comparison of two-step vs. one-step vs. microwave-assisted protocol and X-ray crystallographic analysis of 6-amino-1,4-dihydro-3-methyl-4-phenylpyrano[2,3-c]pyrazole-5-carbonitrile

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A library of pyrazolopyran heterocycles was synthesized first by the traditional heating techniques using two-step and one-step procedures and then by microwave-assisted (MWA) multicomponent condensation of ethyl acetoacetate, hydrazine, malonodinitrile and a variety of substituted aldehydes. A comparison of the foregoing methods was first done based on the yields and then based on the time taken for the completion of the reactions. It was found that although the traditional methods gave slightly better yields, the MWA syntheses lead to substantial reduction in reaction timings. The title compound crystallizes in the triclinic crystal system with space group P–1. The crystal structure as elucidated by X-ray diffraction methods shows the presence of different intermolecular interactions, and the nature and energetics associated with these interactions have been characterized using PIXEL software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Touré B B and Hall D G 2009 Chem. Rev. 109 4439

    Article  Google Scholar 

  2. Dömling A, Wang W and Wang K 2012 Chem. Rev. 112 3083

    Article  Google Scholar 

  3. Anastas P T and Warner J C 1998 Green chemistry: theory and practice (Oxford, UK: Oxford University Press).

    Google Scholar 

  4. Trost B M 2002 Acc. Chem. Res. 35 695

    Article  Google Scholar 

  5. Leng R B, Emonds M V M, Hamilton C T and Ringer J W 2012 Org. Process. Res. Dev. 16 415

    Article  Google Scholar 

  6. Polshettiwar V and Varma R S 2008 Acc. Chem. Res. 41 629

    Article  Google Scholar 

  7. Roberts B A and Straus C 2005 Acc. Chem. Res. 38 653

    Article  Google Scholar 

  8. Henrikson J C, Ellis T K, King J B and Cichewicz R B 2011 J. Nat. Prod. 74 1959

    Article  Google Scholar 

  9. Polshettiwar V and Varma R S 2008 Tetrahedron Lett. 49 397

    Article  Google Scholar 

  10. Foloppe N, Fisher L M, Howes R, Potter A, Robertson Alan G S and Surgenor Allan E 2006 Bioorg. Med. Chem. 14 4792

    Article  Google Scholar 

  11. Junek H and Aigner H 1973 Chem. Ber. 106 914

    Article  Google Scholar 

  12. Wamhoff H, Kroth E and Strauch K 1993 Synthesis 11 1129

    Article  Google Scholar 

  13. Shestopalov A M, Emeliyanova Y M, Shestopalov A A, Rodinovskaya L A, Niazimbetova Z I and Evans D H 2003 Tetrahedron 43 7491

    Article  Google Scholar 

  14. Peng Y, Song G and Dou R 2006 Green Chem. 8 573

    Article  Google Scholar 

  15. Vasuki G and Kumaravel K 2008 Tetrahedron Lett. 49 5636

    Article  Google Scholar 

  16. Schläger T, Schepmann D, Lehmkuhl K, Holenz J, Vela J M, Buschmann H and Wünsch B 2011 J. Med. Chem. 54 6704

    Article  Google Scholar 

  17. Oxford Diffraction 2010 CrysAlis PRO (Yarnton, England: Oxford Diffraction Ltd.)

    Google Scholar 

  18. Sheldrick G M 2008 Acta Crystallogr. A64 112

    Article  Google Scholar 

  19. Farrugia L J 1999 J. Appl. Crystallogr. 32 837

    Article  Google Scholar 

  20. Farrugia L J 2012 J. Appl. Crystallogr. 45 849

    Article  Google Scholar 

  21. Spek A L 2009 Acta Crystallogr. D65 148

    Google Scholar 

  22. Nardelli M 1995 J. Appl. Crystallogr. 28 659

    Article  Google Scholar 

  23. Gavezzotti A 2011 N. J. Chem. 35 1360

    Article  Google Scholar 

  24. Dunitz J D and Gavezzotti A 2012 Cryst. Growth Des. 12 5873

    Article  Google Scholar 

  25. Dunitz J D and Gavezzotti A 2005 Chem. Soc. Rev. 38 2622

    Article  Google Scholar 

  26. Maschio L, Civalleri B, Ugliengo P and Gavezzotti A 2011 J. Phys. Chem. A 115 11179

    Article  Google Scholar 

  27. Allen F H, Kennard O, Watson D G, Brammer L, Orpen A G and Taylor R 1987 J. Chem. Soc. Perkin Trans. 2 S1

    Article  Google Scholar 

  28. Low J N, Cobo J, Portilla J, Quiroga J and Glidewell C 2004 Acta Crystallogr. E60 1034

    Google Scholar 

  29. Sharma N, Brahmachari G, Banerjee B, Kant R and Gupta V K 2014 Acta Crystallogr. E70 875

    Google Scholar 

  30. Mohamed S K, Akkurt M, Tahir M N, Abdelhamida A A and Allahverdiyevd M A 2012 Acta Crystallogr. E68 1414

    Google Scholar 

  31. Bernstein J, Davis R E, Shimoni L and Chang N L 1995 Angew. Chem. Int. Ed. Engl. 34 1555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SHUKLA, P., SHARMA, A., ANTHAL, S. et al. Synthesis of functionalized pyrazolopyran derivatives: comparison of two-step vs. one-step vs. microwave-assisted protocol and X-ray crystallographic analysis of 6-amino-1,4-dihydro-3-methyl-4-phenylpyrano[2,3-c]pyrazole-5-carbonitrile. Bull Mater Sci 38, 1119–1127 (2015). https://doi.org/10.1007/s12034-015-0990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0990-0

Keywords

Navigation