Advertisement

Bulletin of Materials Science

, Volume 38, Issue 6, pp 1577–1588 | Cite as

PEO nanocomposite polymer electrolyte for solid state symmetric capacitors

  • NIRBHAY K SINGH
  • MOHAN L Verma
  • MANICKAM MINAKSHI
Article

Abstract

Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites. The composites have been synthesized by the completely dry (solution-free) hot-press method. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. Nature of the NPEs were studied using X-ray diffraction and energy-dispersive spectra analyses. Thermal stability of the resulting electrolyte was analysed by thermogravimetric analysis and differential scanning calorimetric studies. Morphology changes occurred during the addition of fillers was evidenced by scanning electronic microscope images. Solid polymer electrolytes exhibiting these parameters was found to be suitable for solid state capacitors. The results obtained from the electrolytes with an optimum compositions (PEO70AgI30)93(Al2O3)7 and (PEO70AgI30)95(SiO2)5 used in the (PEO70AgI30)70(AC)30 electrodes for symmetric capacitor applications and their performances were analysed by impedance spectroscopic, Bode plot, cyclic voltammetry, discharge characteristics and leakage current profile.

Keywords

Energy dissipative analysis thermogravimetric analysis scanning electronic microscopy differential scanning calorimetry 

References

  1. 1.
    Wen T C, Tseng H S and Cheng T T 2000 Ind. Eng. Chem. Res. 39 72Google Scholar
  2. 2.
    Itoh T, Fujita K, Inoue K, Iwama H, Kondoh K, Uno T and Kubo M 2013 Electrochim. Acta 112 221Google Scholar
  3. 3.
    Abdul Samad Y, Asghar A and Hashaikeh R 2013 Renew. Energy 56 90Google Scholar
  4. 4.
    Scrosati B 1995 Nature 373 557Google Scholar
  5. 5.
    Appetecchi G B, Hassoun J, Scrosati B, Croce F, Cassel F and Salomon M 2003 J. Power Sources 124 246Google Scholar
  6. 6.
    Wright P V 1975 Brit. Polym. J. 7 319Google Scholar
  7. 7.
    Armand M B, Chabgno J M and Duclot M J 1978 Second international conference on solid electrolytes. St. Andrews, Scotland, September 20–22Google Scholar
  8. 8.
    Murata K, Izuchi S and Yoshihisa Y 2000 Electrochim. Acta 45 1501Google Scholar
  9. 9.
    Agrawal R C and Pandey G P 2008 J. Phys. D: Appl. Phys. 41 18Google Scholar
  10. 10.
    Gadjourova N, Andreev Y G, Tunstall D P and Bruce P G 2001 Nature 412 520Google Scholar
  11. 11.
    Golodnitsky D, Ardel G and Peled E 2002 Solid State Ion. 147 141Google Scholar
  12. 12.
    An S Y, Jeong C, Won M S, Jeong E D and Shim Y B 2009 J. Appl. Electrochem. 39 1573Google Scholar
  13. 13.
    Wieczorek W 1995 Electrochim. Acta 40 2031Google Scholar
  14. 14.
    Masoud E M, Bellihi A -A, Bayoumy W A and Mousa M A 2013 J. Alloys Compd. 575 223Google Scholar
  15. 15.
    Croce F, Appetecchi G B, Persi L and Ronci F 1998 Nature 394 456Google Scholar
  16. 16.
    Dissanayake M A K L, Jayathilaka P A R D, Bokalawala R S P, Albinsson I and Mellander B E 2003 J. Power Sources 409 119Google Scholar
  17. 17.
    Verma M L and Singh N K 2012 Mater. Sci. Res. India 9 139Google Scholar
  18. 18.
    Wagner Z 1933 J. Phys. Chem. B 21 25Google Scholar
  19. 19.
    Wagner J B and Wagner C 1957 J. Chem. Phys. 26 1597Google Scholar
  20. 20.
    Swierczynski D, Zalewska A and Wieczorek W 2001 Chem. Mater. 13 1560Google Scholar
  21. 21.
    Polu A R and Kumar R 2013 Adv. Mater. Lett. 4 543Google Scholar
  22. 22.
    Prsyluski J, Siekierski M and Wiecsorek W 1995 Electrochim. Acta 40 2101Google Scholar
  23. 23.
    Cowie J M G and Martin A C S 1987 Polymers 28 627Google Scholar
  24. 24.
    Reddy M J, Sreekanth T, Chandrasekhar M and Rao U V S 2000 J. Mater. Sci. 35 2841Google Scholar
  25. 25.
    Chu P P, Reddy M J and Kao H M 2003 Solid State Ion. 156 141Google Scholar
  26. 26.
    Ibrahim S, Yasin S M M, Nee N M, Ahmad R and Johan M R 2012 J. Non-Cryst. Solids 358 210Google Scholar
  27. 27.
    Caykara T, Demirci S, Eroglu M S and Guven O 2005 Polymer 46 10750Google Scholar
  28. 28.
    Uma T, Mahalingam T and Stimming U 2005 Mater. Chem. Phys. 90 239Google Scholar
  29. 29.
    Chu W C, Chiang S-F, Li J G and Kuo S W 2013 Materials 6 5077Google Scholar
  30. 30.
    Robitaille C D and Fauteux D 1986 J. Electrochem. Soc. 133 315Google Scholar
  31. 31.
    Kim J W, Ji K-S, Lee J P and Park J W 2003 J. Power Sources 415 119Google Scholar
  32. 32.
    Yap Y L, You A H, Teo L L and Hanapei H 2013 Int. J. Electrochem. Sci. 8 2154Google Scholar
  33. 33.
    Conway B E 1991 J. Electrochem. Soc. 138 1539Google Scholar
  34. 34.
    Dell R and Rand D A J 2001 J. Power Sources 100 2Google Scholar
  35. 35.
    Tanaka T, Ohta K and Arai N 2001 J. Power Sources 97–98 2Google Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

  • NIRBHAY K SINGH
    • 1
  • MOHAN L Verma
    • 2
  • MANICKAM MINAKSHI
    • 3
  1. 1.Department of Applied PhysicsShri Shankaracharya Institute of Engineering and TechnologyKhapri Durg (Chhattisgarh)India
  2. 2.Computational Nanoionics Research Lab, Department of Applied PhysicsFET-SSGIBhilai (Chhattisgarh)India
  3. 3.School of Engineering and Information TechnologyMurdoch UniversityWAAustralia

Personalised recommendations