Skip to main content
Log in

Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this study is to prepare core–shell La0.73Sr0.27MnO3–silica nanoparticles and evaluating their heat generation ability under the safe alternating magnetic field (f = 100 kHz and H = 10–20 kA m−1) for potential applications in magnetic fluid hyperthermia and magnetically triggered drug delivery systems. The magnetic cores of La0.73Sr0.27MnO3 with an average particle size of 54 nm were synthesized by the citrate–gel method. Then, the Stober method was applied to encapsulate nanoparticles with 5-nm-thick silica shell. The core–shell structure of nanoparticles was confirmed by X-ray diffraction, fourier transform infrared spectroscopy and transmission electron microscopy analyses. Cytotoxicity of bare and silica-coated nanoparticles was evaluated by methyl thiazol tetrazolium bromide assay with MCF-7 cell line. The results revealed that the both samples have negligible toxicity below 500 μg ml−1 and silica coating can improve the biocompatibility of nanoparticle. In addition, calorimetric measurements were used to determine the heating efficiency of the core–shell nanostructures in aqueous medium. The results showed that the heat generated of the prepared sample could be safely controlled in the range of 40–60C which is suitable for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mc Bain S C, Yiu H H and Dobson J 2008 Int. J. Nanomed. 3 169

  2. Tibbe A G J, de Grooth B, Greve J, Liberti P A, Dolan G J and Terstappen L W M M 1999 Nat. Biotechnol. 17 1210

  3. Liberti P A, Rao C G and Terstappen L W M M 2001 J. Magn. Magn. Mater. 225 301

  4. Zhang M, Jugold E, Woenne T, Lammers B, Morgenstern M M, Mueller H, Zentgraf M, Bock M, Eisenhut M, Semmler W and Kiessling F 2007 Cancer Res. 67 1555

  5. Elaissari A, Rodrigue M, Meunier F and Herve C 2001 J. Magn. Magn. Mater. 225 127

  6. Jordan A, Scholz R, Wust P, Fahling H and Felix R 1999 J. Magn. Magn. Mater. 201 413

  7. Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H and Felix R 1999 J. Magn. Magn. Mater. 194 185

  8. Soares P I, Ferreira I M, Igreja R A, Novo C M and Borges J P 2012 Rec. Patent Anticancer Drug Discov. 7 64

  9. Purushotham S, Chang P E J, Rumpel H, Kee I H C, Ng R T H, Chow P K H, Tan C K and Ramanujan R V 2009 Nanotechnol. 20 305101

  10. Linh P H, Thach P V, Tuan N A, Thuan N C, Manh D H, Phuc N X and Hong L V 2009 J. Phys.: Conf. Ser. 187 012069

  11. Majeed J, Pradhan L, Ningthoujam R S, Vatsa R K, Bahadur D and Tyagi A K 2014 Colloid Surf. B 122 396

  12. Yu J H, Lee J S, Choa Y H and Hofmann H J 2010 Mater. Sci. Technol. 26 333

  13. Kuznetsov A A, Shlyakhtin O A, Brusentsov N A and Kuznetsov O A 2002 Eur. Cell. Mater. 3 75

  14. Asamitsu A, Morimoto Y, Kumai R, Tomioka Y and Tokura Y 1996 Phys. Rev. B 54 1716

  15. Lu A H, Salabas E L and Schuth F 2007 Angew. Chem. Int. Ed. 46 1222

  16. Sun C, Lee J S H and Zhang M 2008 Adv. Drug Deliv. Rev. 60 1252

  17. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi J S, Chin S F, Sherry A D, Boothman D A and Gao J 2006 Nano Lett. 6 2427

  18. Jeong U, Teng X, Wang Y, Yang H and Xia Y 2007 Adv. Mater. 19 33

  19. Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V and Muller R N 2008 Chem. Rev. 108 2064

  20. Philipse A P, van Bruggen M P B and Pathmamanoharan C 1994 Langmuir 10 92

  21. Liu Q, Xu Z, Finch J A and Egerton R 1998 Chem. Mater. 10 3936

  22. Liu X Q, Ma Z Y, Xing J M and Liu H Z 2004 J. Magn. Magn. Mater. 270 1

  23. Soleymani M, Moheb A and Joudaki E 2009 Cent. Eur. J. Chem. 7 809

  24. Edrissi M, Soleymani M and Akbari S 2011 Synth. React. Inorg. M. 41 1282

  25. Edrissi M, Hosseini S A and Soleymani M 2011 Micro. Nano Lett. 6 836

  26. Edrissi M, Soleymani M and Adinehnia M 2011 Chem. Eng. Technol. 34 1813

  27. Kim D, Zink B L, Hellman F and Coey J M D 1994 Phys. Rev. B 65 214424

  28. Tago T, Harsuta T, Miyajima K, Kishida M, Tashiro S and Wakabayashi K 2002 J. Am. Ceram. Soc. 85 2188

  29. Narita A, Naka K and Chujo Y 2009 Colloids Surf. A 336 46

  30. Sayagues M J, Cordoba J M and Gotor F J 2012 J. Solid State Chem. 188 11

  31. Singh R K, Kim T H, Patel K D, Knowles J C and Kim H W 2012 J. Biomed. Mater. Res. A 100A 1734

  32. Liu Sh, Tan X, Li K and Hughes R 2002 Ceram. Int. 28 327

  33. Wang X, Cui Q, Pan Y and Zou G 2003 J. Alloys Compd. 354 91

  34. Naravanaswamy A, Xu H F, Pradhan N and Peng X G 2006 Angew. Chem. Int. Ed. 45 5361

  35. Lopez-Quintela M A, Hueso L E, Rivas J and Rivadulla F 2003 Nanotechnol. 14 212

  36. Tabata Y and Ikada Y 1990 Adv. Polym. Sci. 94 107

  37. Choi H S, Liu W, Misra P, Tanaka E, Zimmer J P, Ipe B I, Bawendi M G and Frangioni J V 2007 Nat. Biotechnol. 25 1165

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MOHAMMAD EDRISSI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SOLEYMANI, M., EDRISSI, M. Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems. Bull Mater Sci 38, 1633–1638 (2015). https://doi.org/10.1007/s12034-015-0976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0976-y

Keywords

Navigation