Advertisement

Bulletin of Materials Science

, Volume 38, Issue 6, pp 1507–1517 | Cite as

A 1 V supercapacitor device with nanostructured graphene oxide/polyaniline composite materials

  • DEEPAK KUMAR
  • ANJAN BANERJEEEmail author
  • SATISH PATIL
  • ASHOK K SHUKLA
Article

Abstract

Polyaniline and graphene oxide composite on activated carbon cum reduced graphene oxide-supported supercapacitor electrodes are fabricated and electrochemically characterized in a three-electrode cell assembly. Attractive supercapacitor performance, namely high-power capability and cycling stability for graphene oxide/polyaniline composite, is observed owing to the layered and porous-polymeric-structured electrodes. Based on the materials characterization data in a three-electrode cell assembly, 1 V supercapacitor devices are developed and performance tested. A comparative study has also been conducted for polyaniline and graphene oxide/polyaniline composite-based 1 V supercapacitors for comprehending the synergic effect of graphene oxide and polyaniline. Graphene oxide/polyaniline composite-based capacitor that exhibits about 100 F g−1 specific capacitance with faradaic efficiency in excess of 90% has its energy and power density values of 14 Wh kg−1 and 72 kW kg−1, respectively. Cycle-life data for over 1000 cycles reflect 10% capacitance degradation for graphene oxide/polyaniline composite supercapacitor.

Keywords

Supercapacitor pseudocapacitance polyaniline graphene oxide cycling stability 

Notes

Acknowledgements

We are grateful to the Department of Science & Technology, Government of India, for financial support. Deepak Kumar thanks University Grant Commission, New Delhi, for Dr D S Kothari Postdoctoral Fellowship (F.4-2/2006 (BSR)/13-899/2013).

Electronic Supplementary Material

Supplementary material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci).

Supplementary material

12034_2015_966_MOESM1_ESM.docx (1 mb)
(DOCX 1.00 MB)

References

  1. 1.
    Levi M D, Salitra G, Levy N, Aurbach D and Maier J 2009 Nat. Mater. 8 872Google Scholar
  2. 2.
    Li H Q, Luo J Y, Zhou X F, Yu C Z and Xia Y Y 2007 J. Electrochem. Soc. 154 A731Google Scholar
  3. 3.
    Jampani P, Manivannan A and Kumta P N 2010 Electrochem. Soc. Interface 19 57Google Scholar
  4. 4.
    Wang Y and Xia Y 2006 J. Electrochem. Soc. 153 A450Google Scholar
  5. 5.
    Cong H P, Ren X C, Wang P and Yu S H 2013 Energy Environ. Sci. 6 1185Google Scholar
  6. 6.
    Peng X, Huo K, Fu J, Zhang X, Gao B and Chu P K 2013 Chem. Commun. 49 10172Google Scholar
  7. 7.
    Hou Y, Cheng Y, Hobson T and Liu J 2010 Nano Lett. 10 2727Google Scholar
  8. 8.
    Zhou C, Zhang Y, Li Y and Liu J 2013 Nano Lett. 13 2078Google Scholar
  9. 9.
    Wang G, Zhang L and Zhang J 2012 Chem. Soc. Rev. 41 797Google Scholar
  10. 10.
    Zhao Y, Liu B, Pan L and Yu G 2013 Energy Environ. Sci. 6 2856Google Scholar
  11. 11.
    Zhang Q, Li Y, Feng Y and Feng W 2013 Electrochim. Acta 90 95Google Scholar
  12. 12.
    Du J and Cheng H-M 2012 Macromol. Chem. Phys. 213 1060Google Scholar
  13. 13.
    Lerf A, He H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477Google Scholar
  14. 14.
    Zhu Z Z, Wang G C, Sun M Q, Li X W and Li C Z 2011 Electrochim. Acta 56 1366Google Scholar
  15. 15.
    Zhang J and Zhao X S 2012 J. Phys. Chem. C 116 5420Google Scholar
  16. 16.
    Fu H, Du Z-J, Zou W, Lia H-Q and Zhang C 2013 J. Mater. Chem. A 1 14943Google Scholar
  17. 17.
    Wang Y, Tao S, An Y, Wu S and Meng C 2013 J. Mater. Chem. A 1 8876Google Scholar
  18. 18.
    Liu T, Finn L, Yu M, Wang H, Zhai T, Lu X, Tong Y and Li Y 2014 Nano Lett. 14 2522Google Scholar
  19. 19.
    Kim J, Park S-J and Kim S 2013 Carbon Lett. 14 51Google Scholar
  20. 20.
    Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W and Tour J M 2010 ACS Nano 4 4806Google Scholar
  21. 21.
    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558Google Scholar
  22. 22.
    Li N, Xiao Y, Xu C, Li H and Yang X 2013 Int. J. Electrochem. Sci. 8 1181Google Scholar
  23. 23.
    Lu H, Liang F, Gou J, Leng J and Du S 2014 Smart Mater. Struct. 23 85034Google Scholar
  24. 24.
    Ganguly A, Sharma S, Papakonstantinou P and Hamilton J 2011 J. Phys. Chem. C 115 17009Google Scholar
  25. 25.
    Conway B E 1999 Electrochemical supercapacitors, scientific fundamentals and technological applications (New York: Kluwer Academic/Plenum Publishers).Google Scholar
  26. 26.
    Kumar N A, Choi H J, Shin Y R, Chang D W, Dai L and Baek J B 2012 ACS Nano 6 1715Google Scholar
  27. 27.
    Miller J R 1998 Proceedings of the 8th international seminar on double-layer capacitors and similar energy storage devices, Deerfield Beach, Florida, December 7–9 1998Google Scholar
  28. 28.
    Yang C, Li C Y V, Li F and Chan K Y 2013 J. Electrochem. Soc. 160 H271Google Scholar
  29. 29.
    Srinivasan V and Weidner J W 1999 J. Electrochem. Soc. 146 1650Google Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

  • DEEPAK KUMAR
    • 1
  • ANJAN BANERJEE
    • 1
    Email author
  • SATISH PATIL
    • 1
  • ASHOK K SHUKLA
    • 1
  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations