Skip to main content
Log in

Conductivity studies on microwave synthesized glasses

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Conductivity measurements have been made on x V 2O5 − (100−x) [0.5 Na2O + 0.5 B2O3] (where 10 ≤ x ≤ 50) glasses prepared by using microwave method. DC conductivity (σ) measurements exhibit temperature-and compositional-dependent trends. It has been found that conductivity in these glasses changes from the predominantly ‘ionic’ to predominantly ‘electronic’ depending upon the chemical composition. The dc conductivity passes through a deep minimum, which is attributed to network disruption. Also, this nonlinear variation in σ dc and activation energy can be interpreted using ion–polaron correlation effect. Electron paramagnetic resonance (EPR) and impedance spectroscopic techniques have been used to elucidate the nature of conduction mechanism. The EPR spectra reveals, in least modified (25 Na2O mol%) glasses, conduction is due to the transfer of electrons via aliovalent vanadium sites, while in highly modified (45 Na2O mol%) glasses Na+ ion transport dominates the electrical conduction. For highly modified glasses, frequency-dependent conductivity has been analysed using electrical modulus formalism and the observations have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Vaidhyanathan B, Raizada P and Rao K J 1997 J. Mater. Sci. Lett. 16 2022

  2. Rao K J 2002 Structural chemistry of glasses (North-Holland: Elsevier)

  3. Thangadurai V and Weppner W 2002 Ionics 8 281

  4. Horopanitis E E, Perentzis G, Pavlidou E and Papadimitriou L 2003 Ionics 9 88

  5. Angesh Chandra, Alok Bhatt and Archana Chandra 2013 J. Mater. Sci. Technol. 29 193

  6. Das S S, Gupta C P and Vibha Srivastava 2005 Ionics 11 423

  7. Kabi S and Ghosh A 2013 Solid State Ionics doi: 10.1016/j.ssi.2013.09.028

  8. Muthupari S, Lakshmi Raghavan S and Rao K J 1996 J. Phys. Chem. 100 4243

  9. Mirzayi M and Hekmatshoar M H 2009 Ionics 15 121

  10. Jozwiak P and Garbarczyk J E 2005 Solid State Ionics 176 2163

  11. Azmoonfar M, Hekmat-Shoar M H, Mirzayi M and Behzad H 2009 Ionics 15 513

  12. Narayana Reddy C, Veeranna Gowda V C and Sujatha B 2006 Ionics 12 159

  13. Abbas L, Bih L, Nadiri A, El Amraoui Y, Mezzane D and Elouadi B 2007 J. Mol. Struct. 876 194

  14. Subrahmanyam K and Salagram M 2000 Opt. Mater. 15 181

  15. Sambasiva Rao K, Srinivasa Reddy M, Ravi Kumar V and Veeraiah N 2007 Physica B 396 29

  16. Mansour E, El-Egili K and El-Damrawi G 2007 Physica B 392 221

  17. Garbarczyk J E, Murawski P, Wasiucionek M, Tykarski L, Bacewicz R and Aleksiejuk A 2000 Solid State Ionics 136 1077

  18. Subbalakshmi P and Veeraiah N 2002 J. Non-Cryst. Solids 298 89

  19. Gupta S, Khanijo N and Mansingh A 1995 J. Non-Cryst. Solids 181 58

  20. Muncaster R and Parke S 1977 J. Non-Cryst. Solids 24 399

  21. Muthupari S, Prabakar S and Rao K J 1994 J. Phys. Chem. 98 2646

  22. Sujata Sanghi, Anshu Sheoran, Ashish Agarwal and Satish Khasa 2010 Physica B 405 4919

  23. Barsoukov E and Macdonald J R 2005 Impedance spectroscopy: theory, experiment and applications. 2 ed. (New Jersey: Wiley- Interscience) p 303

  24. Macdonald J R 1992 Ann. Biomed. Eng. 20 289

  25. Krins N, Rulmont A, Grandjean J, Gilbert B, Lepot l, Cloots R and Vertruyen B 2006 Solid State Ionics 177 3147

  26. Nagaraja N, Sankarappa T and Prashant Kumar M 2008 J. Non-Cryst. Solids 354 1503

  27. Krasowski K and Garbarczyk J E 1996 Physica Status Solidi (a) 158 K13

  28. Murawski L and Barczynski R J 2005 Solid State Ionics 176 2145

  29. Devidas G B, Sankarappa T, Chougule B K and Prasad G 2007 J. Non-Cryst. Solids 353 426

  30. Ungureanu M C, Levy M and Souquet J L 1998 Ionics 4 200

  31. Barczynski R J and Murawski L 2006 Mater. Sci. Poland 24 221

  32. Bacewicz R, Wasiucionek M, Twarog A, Filipowicz J, Jozwiak P and Garbarczyk J 2005 J. Mater. Sci. 40 4267

  33. Doweidar H, Megahed A and Gohar I A 1986 J. Phys. D: Appl. Phys. 19 1939

  34. Almond D P, West A R and Grant R J 1982 Solid State Commun. 44 1277

  35. Almond D P, Duncan G K and West A R 1983 Solid State Ionics 8 159

  36. Sidebottom D L 1999 J. Non-Cryst. Solids 244 223

  37. Koushik Majhi, Rahul Vaish, Gadige Paramesh and Varma K B R 2013 Ionics 19 99

  38. Bose J M, Reau J M, Senegas J and Poulain M 1995 Solid State Ionics 82 39

  39. Graham Williams and David C Watts 1970 Trans. Faraday Soc. 66 80

  40. Elliott S R 1988 Solid State Ionics 27 131

  41. Rao K J, Estournes C, Menetrier M and Levasseur A 1994 Philos. Mag. B 70 809

  42. Elliott S R and Henn F E G 1990 J. Non-Cryst. Solids 116 179

  43. Rao K J Estournes C Levasseur A 1993 Philos. Mag. B 67 389

  44. Sujatha B, Narayana Reddy C and Chakradhar R P S 2010 Philos. Mag. B 90 2635

  45. Veeranna gowda V C, Chethana B K and Narayana Reddy C 2013 Mater. Sci. Eng. B 178 826

  46. Manish S Jayaswal, Kanchan D K, Poonam Sharma and Meenakshi Pant 2011 Solid State Ionics 186 7

  47. Pant M, Kanchan D K, Sharma P and Manish S Jayswal 2008 Mat. Sci. Eng. 149 18

  48. Rahul Vaish and Varma K B R 2011 Ionics 17 727

  49. Munia Ganguli, Harish Bhat M and Rao K J 1999 Solid State Ionics 122 23

  50. Sundeep Kumar, Murugavel S and Rao K J 2001 J. Phys. Chem. B 105 5862

  51. Veeranna gowda V C, Narayana Reddy C and Rao K J 2013 Bull. Mater. Sci. 36 71

Download references

Acknowledgements

We are grateful to Professor KJ Rao, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his encouragement and many helpful discussions. We also thank Jain University, Bangalore, for providing financial assistance to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C NARAYANA REDDY.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAJIV, A., REDDY, M.S., VISWANATHA, R. et al. Conductivity studies on microwave synthesized glasses. Bull Mater Sci 38, 985–993 (2015). https://doi.org/10.1007/s12034-015-0958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0958-0

Keywords

Navigation