Skip to main content
Log in

Synthesis and characterization of ZnO/TiO2 composite core/shell nanorod arrays by sol–gel method for organic solar cell applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

ZnO/TiO2 core/shell nanorod arrays were deposited on indium tin oxide (ITO) substrate via a facile sol–gel dip-coating process. Effects of solution pH for ZnO, annealing temperature, growth time and temperature on the physical properties of nanorods have been investigated. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) were employed to characterize the structural and morphological properties of the prepared composite nanorods. XRD result revealed wurtzite structure of ZnO with a mixed anatase and rutile structure phase for TiO2. Energy-dispersive X-ray (EDX) and UV–vis spectroscopy were used to study the chemical composition and optical properties of the films, respectively. Electrical resistivity of the films was also investigated. The optical and electrical properties of the bare TiO2 thin film and core/shell composite were compared together. The results showed that owing to smaller band gap and lower resistivity, the core/shell structure as an electron transport layer for inverted photovoltaic devices is more suitable than bare TiO2 thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Brabec C J and Durrant J R 2008, MRS Bull. 33 670

    Article  Google Scholar 

  2. Hsieh C H, Cheng Y J, Li P J, Chen C H, Dubosc M, Liang R M and Hsu C S 2010, J. Am. Chem. Soc. 132 4887

    Article  Google Scholar 

  3. Yuekun Lai Y, Gong J and Lin C 2012, Int. J. Hydrogen Energy 37 6438

    Article  Google Scholar 

  4. Hau S K, Yip H L and Jen A K Y 2010, Polym. Rev. 50 474

    Article  Google Scholar 

  5. Li C Y, Wen T C, Lee T H, Guo T F, Huang J C A, Lin Y C and Hsu Y J 2009, J. Mater. Chem. 19 1643

    Article  Google Scholar 

  6. Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Choulis S A and Brabec J 2006, J. Appl. Phys. Lett. 89 233517

    Article  Google Scholar 

  7. Abdolahzadeh Ziabari A and Ghodsi F E 2011, Thin Solid Films 520 1228

    Article  Google Scholar 

  8. Abdolahzadeh Ziabari A and Ghodsi F E 2012, Surf. Coat. Technol. 213 15

    Article  Google Scholar 

  9. Abdolahzadeh Ziabari A and Ghodsi F E 2011, J. Alloys Compd. 509 8748

    Article  Google Scholar 

  10. Baranyai R, Detrich A, Volentiru E and Horvolgyi Z 2009 , J. Ind. Chem. 37 131

    Google Scholar 

  11. Abdolahzadeh Ziabari A and Ghodsi F E 2013, Mater. Sci. Semicond. Process. 16 1629

    Article  Google Scholar 

  12. Abdolahzadeh Ziabari A and Ghodsi F E 2012, Sol. Energy Mater. Sol. Cells 105 249

    Article  Google Scholar 

  13. Abdolahzadeh Ziabari A and Ghodsi F E 2013, J. Lumin. 141 121

    Article  Google Scholar 

  14. Cozzoli P D, Kornowski A and Weller H 2003, J. Am. Chem. Soc. 125 14539

    Article  Google Scholar 

  15. Zou C W and Gao W 2010, Trans. Electr. Electron. Mater. 11 1

    Article  Google Scholar 

  16. Chappel S, Chen S G and Zaban A 2002, Langmuir 18 3336e42

    Article  Google Scholar 

  17. Diamant Y, Chen S G, Melamed O and Zaban A 2003, J. Phys. Chem. B 107 1977e81

    Article  Google Scholar 

  18. Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J and Yang P 2006, J. Phys. Chem. B 110 22652

    Article  Google Scholar 

  19. Law M, Greene L E, Johnson J C, Saykally R and Yang P D 2005, Nat. Mater. 4 455

    Article  Google Scholar 

  20. Baxter J B and Aydil E S 2006, Sol. Energy Mater. Sol. Cells 90 607

    Article  Google Scholar 

  21. Baxter J B, Walker A M, Van Ommering K and Aydil E S 2006, Nanotechnology 17 S304

    Article  Google Scholar 

  22. Mane R S, Lee W J, Pathan H M and Han S H 2005, J. Phys. Chem. B 109 24254

    Article  Google Scholar 

  23. Tang H, Prasad K, Sanjinès R, Schmid P E and Lvy F 1994 , J. Appl. Phys. 75 2042

    Article  Google Scholar 

  24. Haidry A A, Puskelova J, Plecenik T, Durina P, Gregus J, Truchly M, Roch T, Zahoran M, Vargova M, Kus P, Plecenik A and Plesch G 2012, Appl. Surf. Sci. 259 270

    Article  Google Scholar 

  25. Abdolahzadeh Ziabari A and Ghodsi F E 2012, J. Mater. Sci: Mater. Electron. 23 1628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALI ABDOLAHZADEH ZIABARI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AHMADI, K., ZIABARI, A.A., MIRABBASZADEH, K. et al. Synthesis and characterization of ZnO/TiO2 composite core/shell nanorod arrays by sol–gel method for organic solar cell applications. Bull Mater Sci 38, 617–623 (2015). https://doi.org/10.1007/s12034-015-0898-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0898-8

Keywords

Navigation