Skip to main content
Log in

Influence of growth temperature on morphological, structural and photoluminescence properties of ZnO nanostructure thin layers and powders deposited by thermal evaporation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanostructures were grown as thin films on the p-silicon (100) wafer and also in the form of powder inside the boat by heating (550–950 C) zinc powder in the presence of oxygen without any catalyst or additives, using the thermal evaporation method. The field-emission scanning electron microscopy images, as well as energy-dispersive X-ray spectroscopy and X-ray diffraction spectra, indicate that although the grown samples are covered with various nanostructure shapes, such as nanowires, nanorods, flower-like nanostructures and microcages, all have a reasonable stoichiometric composition in the polycrystalline wurtzite phase along (002) in the thin layer samples and along (101) in the powder samples within the boat. The room-temperature photoluminescence spectra of the thin layer samples revealed not only the ultraviolet (UV) emission blue shift of the samples with an increase in the growth temperature, but also found that the emission intensity ratio of UV/visible (∼510 nm) has a maximum and minimum, corresponding to that grown at 750 and 950 C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abdulgafour H I, Hassan Z, Al-Hardan N and Yam F K 2010 Physica B 405 2570

  • Al-Azri K, Nor R M, Amin Y M and Al-Ruqeishi M S 2010 Appl. Surf. Sci. 256 5957

  • Baxtera J B and Aydil E S 2006 Sol. Energy Mater. Sol. Cells 90 607

  • Chen J J, Yu M H, Zhou W L, Sun K and Wang L M 2005 Appl. Phys. Lett. 87 173119

  • Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A and Sberveglieri G 2009 Prog. Mater. Sci. 1 54

  • Cullity B D and Stock S R 2001 Elements of X-ray diffraction (New Jersey, USA: Prentice Hall) 3rd edn, p 619

  • Dedova T, Volobujeva O, Klauson J, Mere A and Krunks M 2007 Nanoscale Res. Lett. 2 391

  • Fang F, Zhao D X, Zhang J Y, Shen D Z, Lu Y M, Fan X W, Li B H and Wang X H 2008 Mater. Lett. 62 1092

  • Guo R, Nishimura J, Matsumoto M, Higashihata M, Nakamura D and Okada T 2009 Appl. Phys. B 94 33

  • Hou K, Li C, LeiW, Zhang X, Yang X, Qu K, Wang B, Zhao Z and Sun X W 2009 Physica E 41 470

  • Ibrahim A A, El-Sayed N Z, Kaid M A and Ashour A 2004 Vacuum 5 189

  • Kar J P, Das S N, Choi J H, Lee T I and Myoung J M 2010 Appl. Surf. Sci. 256 4995

  • Kong Y C, Yu D P, Zhang B, Fang W and Feng S Q 2001 Appl. Phys. Lett. 78 407

  • Kwok W M,Djurišič A B, Leung Y H, Li D, Tam K H, Phillips D L and Chan W K 2006 Appl. Phys. Lett. 89 183112

  • Li J, Srinivasan S, He G N, Kang J Y, Wu S T and Ponce F A 2008 J. Cryst. Growth 310 599

  • Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943

  • Nie L, Gao L, Feng P, Zhang J, Fu X, Liu Y, Yan X and Wang T 2006 Small 2 621

  • Oh E, Choi H Y, Jung S H, Cho S, Kim J C, Lee K H, Kang S W, Kim J, Yun J Y and Jeong S H 2009 Sens. Actuators B: Chem. 141 239

  • Sawaby A, Selim M S, Marzouk S Y, Mostafa M A and Hosny A 2010 Physica B 405 3412

  • Suehiro J, Nakagawa N, Hidaka S I, Ueda M, Imasaka K, Higashihata M, Okada T and Hara M 2006 Nanotechnology 17 2567

  • Tang Z and Kotov N A 2005 Adv. Mater. 17 951

  • Umar A and Hahn Y B 2006 Nanotechnology 17 2174

  • Wang Z L 2007 Appl. Phys. A 88 7

  • Wei L, Zhang X and Zuoya Z 2007a J. Vac. Sci. Technol. B 25 608

  • Wei X Q, Man B Y, Liu M, Xue C S, Zhuang H Z and Yang C 2007b Physica B 388 145

  • Yousefi R, Muhamad M R and Zak A K 2011 Curr. Appl. Phys. 11 767

  • Zhao M H, Wang Z L and Mao S X 2004 Nano Lett. 4 587

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HOSEIN ESHGHI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ARJMAND, Y., ESHGHI, H. Influence of growth temperature on morphological, structural and photoluminescence properties of ZnO nanostructure thin layers and powders deposited by thermal evaporation. Bull Mater Sci 37, 1663–1668 (2014). https://doi.org/10.1007/s12034-014-0736-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0736-4

Keywords

Navigation