Abstract
Zinc oxide (ZnO) nanostructures were grown as thin films on the p-silicon (100) wafer and also in the form of powder inside the boat by heating (550–950 ∘C) zinc powder in the presence of oxygen without any catalyst or additives, using the thermal evaporation method. The field-emission scanning electron microscopy images, as well as energy-dispersive X-ray spectroscopy and X-ray diffraction spectra, indicate that although the grown samples are covered with various nanostructure shapes, such as nanowires, nanorods, flower-like nanostructures and microcages, all have a reasonable stoichiometric composition in the polycrystalline wurtzite phase along (002) in the thin layer samples and along (101) in the powder samples within the boat. The room-temperature photoluminescence spectra of the thin layer samples revealed not only the ultraviolet (UV) emission blue shift of the samples with an increase in the growth temperature, but also found that the emission intensity ratio of UV/visible (∼510 nm) has a maximum and minimum, corresponding to that grown at 750 and 950 ∘C, respectively.
Similar content being viewed by others
References
Abdulgafour H I, Hassan Z, Al-Hardan N and Yam F K 2010 Physica B 405 2570
Al-Azri K, Nor R M, Amin Y M and Al-Ruqeishi M S 2010 Appl. Surf. Sci. 256 5957
Baxtera J B and Aydil E S 2006 Sol. Energy Mater. Sol. Cells 90 607
Chen J J, Yu M H, Zhou W L, Sun K and Wang L M 2005 Appl. Phys. Lett. 87 173119
Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A and Sberveglieri G 2009 Prog. Mater. Sci. 1 54
Cullity B D and Stock S R 2001 Elements of X-ray diffraction (New Jersey, USA: Prentice Hall) 3rd edn, p 619
Dedova T, Volobujeva O, Klauson J, Mere A and Krunks M 2007 Nanoscale Res. Lett. 2 391
Fang F, Zhao D X, Zhang J Y, Shen D Z, Lu Y M, Fan X W, Li B H and Wang X H 2008 Mater. Lett. 62 1092
Guo R, Nishimura J, Matsumoto M, Higashihata M, Nakamura D and Okada T 2009 Appl. Phys. B 94 33
Hou K, Li C, LeiW, Zhang X, Yang X, Qu K, Wang B, Zhao Z and Sun X W 2009 Physica E 41 470
Ibrahim A A, El-Sayed N Z, Kaid M A and Ashour A 2004 Vacuum 5 189
Kar J P, Das S N, Choi J H, Lee T I and Myoung J M 2010 Appl. Surf. Sci. 256 4995
Kong Y C, Yu D P, Zhang B, Fang W and Feng S Q 2001 Appl. Phys. Lett. 78 407
Kwok W M,Djurišič A B, Leung Y H, Li D, Tam K H, Phillips D L and Chan W K 2006 Appl. Phys. Lett. 89 183112
Li J, Srinivasan S, He G N, Kang J Y, Wu S T and Ponce F A 2008 J. Cryst. Growth 310 599
Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943
Nie L, Gao L, Feng P, Zhang J, Fu X, Liu Y, Yan X and Wang T 2006 Small 2 621
Oh E, Choi H Y, Jung S H, Cho S, Kim J C, Lee K H, Kang S W, Kim J, Yun J Y and Jeong S H 2009 Sens. Actuators B: Chem. 141 239
Sawaby A, Selim M S, Marzouk S Y, Mostafa M A and Hosny A 2010 Physica B 405 3412
Suehiro J, Nakagawa N, Hidaka S I, Ueda M, Imasaka K, Higashihata M, Okada T and Hara M 2006 Nanotechnology 17 2567
Tang Z and Kotov N A 2005 Adv. Mater. 17 951
Umar A and Hahn Y B 2006 Nanotechnology 17 2174
Wang Z L 2007 Appl. Phys. A 88 7
Wei L, Zhang X and Zuoya Z 2007a J. Vac. Sci. Technol. B 25 608
Wei X Q, Man B Y, Liu M, Xue C S, Zhuang H Z and Yang C 2007b Physica B 388 145
Yousefi R, Muhamad M R and Zak A K 2011 Curr. Appl. Phys. 11 767
Zhao M H, Wang Z L and Mao S X 2004 Nano Lett. 4 587
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
ARJMAND, Y., ESHGHI, H. Influence of growth temperature on morphological, structural and photoluminescence properties of ZnO nanostructure thin layers and powders deposited by thermal evaporation. Bull Mater Sci 37, 1663–1668 (2014). https://doi.org/10.1007/s12034-014-0736-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12034-014-0736-4