Skip to main content
Log in

In x Ga1−x N fibres grown on Au/SiO2 by chemical vapour deposition

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The growth of In x Ga1−x N films (x = 0⋅1 and x = 0⋅2) on a thin gold layer (Au/SiO2) by chemical vapour deposition (CVD) at 650 C is reported. As a novelty, the use of a Ga–In metallic alloy to improve the indium incorporation in the In x Ga1−x N is proposed. The results of high quality In x Ga1−x N films with a thickness of three micrometres and the formation of microfibres on the surface are presented. A morphological comparison between the In x Ga1−x N and GaN films is shown as a function of the indium incorporation. The highest crystalline In x Ga1−x N films structure was obtained with an indium composition of x = 0⋅20. Also, the preferential growth on the (002) plane over In0⋅2 Ga0⋅8 N was observed by means of X-ray diffraction. The thermoluminescence (TL) of the In x Ga1−x N films after beta radiation exposure was measured indicating the presence of charge trapping levels responsible for a broad TL glow curve with a maximum intensity around 150 C. The TL intensity was found to depend on composition being higher for x = 0⋅1 and increases as radiation dose increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653

    Article  Google Scholar 

  • Cai X M, Ye F, Jing S Y, Zhang D P, Fan P and Xie E Q 2009 J. Alloys Compd. 467 427

    Article  Google Scholar 

  • Carbajal G G, Soto G, Fisher AM and Contreras O E 2011 J. Cryst. Growth 319 19

    Article  Google Scholar 

  • Deb P, Kim H, Qin Y, Lahiji R, Oliver M, Reifenberger R and Sands T 2006 Nano Lett. 6 2893

    Article  Google Scholar 

  • Devi A, Schmid R, Muller J and Fischer R A 2005 Top Organomet Chem. 9 49

    Google Scholar 

  • Dong-Joon K, Yong-Tea M, Keun-Man S, In-Hwan L and Seon-Ju P 2001 J. Electron. Mater. 30 99

    Article  Google Scholar 

  • Dupuis R D, Grudowski P A, Eiting C J and Park J 1999 Semiconductors 33 965

    Article  Google Scholar 

  • García R, Hirata G A, Farias M H and McKittrick J 2002 Mater. Sci. Eng. B90 7

    Article  Google Scholar 

  • Hahn C, Zhaoyu Z, Fu A, Cheng Hao W, Yun Jeong H, Gargas D J and Yang P 2011 ACS Nano 5 3970

    Article  Google Scholar 

  • Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117

    Article  Google Scholar 

  • Lestrade M, Li Z Q, Xiao Y G and Simon Li Z M 2011 Opt. Quant. Electron. 42 699

    Article  Google Scholar 

  • Liu L and Edgar J H 2002 Mater. Sci. Eng. R37 61

    Article  Google Scholar 

  • Matsuoka T, Yoshimoto N, Sasaki T and Katsui A 1992 J. Electron. Mater. 21 157

    Article  Google Scholar 

  • McCluskey M D, Van de Walle C G, Master C P, Romano L T and Johnson N M 1998 Appl. Phys. Lett. 72 2725

    Article  Google Scholar 

  • Morgan N N and Zhizhen Y 2002 J. Micro. Optoelectron. 2 52

    Google Scholar 

  • Mueller A H, Petruska M A, Achermann M, Werder D J, Akhadov E A, Koleske D D, Hoffbauer M A and Klimov V I 2005 Nano Lett. 5 1039

    Article  Google Scholar 

  • Nakamura S 1999 Semicond. Sci. Technol. 14 R27

    Article  Google Scholar 

  • Ponce F A and Bour D P 1997 Nature 386 351

    Article  Google Scholar 

  • Ramos-Carrazco A, Chaikina E, Contreras O E, Barboza-Flores M and Garcia R 2011 Revista Mexicana de Fisica 57 7

    Google Scholar 

  • Red Kin A N, Tatsi V I, Makovei Z I, Gruzintsev A N and Yakimov E E 2004 Inorg. Mater. 40 1197

    Article  Google Scholar 

  • Roberts J C, Parker C A, Muth J F, Leboeuf S F, Aumer M E, Bedair S M and Reed M J 2002 J. Electron. Mater. 31 L1

    Article  Google Scholar 

  • Stoica T, Meijers R J, Calarco R, Richter T, Sutter E and Luth H 2006 Nano Lett. 6 1541

    Article  Google Scholar 

  • Van de Walle C G, McCluskey M D, Master C P, Romano L T and Johnson N M 1999 Mater. Sci. Eng. B59 274

    Article  Google Scholar 

  • Wu J, Walukiewicz W, Yu K M, Shan W, Ager III J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477

    Article  Google Scholar 

  • Zhou X, Chesin J, Crawford S and Gradecak S 2012 Nanotechnol. 23 285603

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge to Universidad Michoacana and Universidad de Sonora for the technical facilities provided. This research work was supported by CONACYT (project #102671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A RAMOS-CARRAZCO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAMOS-CARRAZCO, A., GARCÍA, R., BARBOZA-FLORES, M. et al. In x Ga1−x N fibres grown on Au/SiO2 by chemical vapour deposition. Bull Mater Sci 37, 1597–1602 (2014). https://doi.org/10.1007/s12034-014-0711-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0711-0

Keywords

Navigation