Skip to main content
Log in

Effect of oxidation and annealing temperature on optical and structural properties of SnO2

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Tin oxide thin films were deposited on glass substrate with 100 nm thickness of Sn, which was coated by magnetron sputtering followed by thermal oxidation at different temperatures. The effect of oxidation temperature on the optical and structural properties of SnO2 films were investigated. Higher transmittance, lower absorption and lesser structural defects were obtained at higher temperatures. Optical bandgap increases with temperature, while the Urbach energy showed reduction. The X-ray diffraction studies showed that at lower temperatures (300, 350 °C), a combined phase of SnO and SnO2 was obtained, while at higher temperatures (400, 450 °C), a nearly polycrystalline SnO2 film with preferred orientation of (101) was produced. Annealing of the samples at 500–650 °C caused the transmittance and optical bandgap increased, while the absorption decreased. Reduction of the Urbach energy after annealing could be attributed to the reduction of the degree of thermal disorder. AFM studies showed that although the thin films were annealed under similar condition, their roughness was not similar because of different oxidation temperatures, which means that initial oxidation temperature played an important role on surface uniformity of SnO2 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abay B, Guder H S, Efeoglu H and Yogurtcu Y K 1999 J. Phys. D: Appl. Phys. 32 2942

    Article  Google Scholar 

  • Biljana Pejova 2010 Mater. Chem. Phys. 119 367

    Article  Google Scholar 

  • Carlson D E 1975 J. Electrochem. Soc. 122 1334

    Article  Google Scholar 

  • Choi W K, Sung H, Kim K H, Cho J S, Choi S C, Jung H J, Koh S K, Lee C M and Jeong K 1997 J. Mater. Sci. Lett. 16 1551

    Article  Google Scholar 

  • Cody G D Tiedje T, Beles B A, Brooks B and Goldestain Y 1981 Phys. Rev. Lett. 47 1480

    Article  Google Scholar 

  • Goetzberger A and Hebling C 2000 Sol. Energy Mater. Sol. Cells 62 1

    Article  Google Scholar 

  • Jochan Joseph, Varghese Mathew and K E Abraham 2007 Chinese J. Phys. 45

  • Kane J, Scweizer H P and Kern W 1976 J. Electrochem. Soc. 123 270

    Article  Google Scholar 

  • Khan A F, Mehmood M, Rana A M and Bhatti M T 2009 Appl. Surf. Sci. 255 8569

    Google Scholar 

  • Kim H and Laitinen H A 1975 J. Am. Ceram. Soc. 58 23

    Article  Google Scholar 

  • Kim H, Pique A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H and Chrisey D B 1999a Appl. Phys. Lett. 74 3444

    Article  Google Scholar 

  • Kim H, Gilmore C M, Pique A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H and Chrisey D B 1999b J. Appl. Phys. 86 6451

    Article  Google Scholar 

  • Klingshirn C F 1997 Semiconductor optics (Berlin: Springer-Verlag)

    Google Scholar 

  • Lehmann H W and Widmer R 1975 Thin Solid Films 27 359

    Article  Google Scholar 

  • Li C, Li X C, Yan P X, Chong E M, Liu Y, Yue G H and Fan X Y 2007 Appl. Surf. Sci. 253 4000

    Article  Google Scholar 

  • Martienssen H W 1957 Phys. Chem. Solids 2 257

    Article  Google Scholar 

  • Matthias Batzill and Ulrike Diebold 2005 Prog. Surf. Sci. 79 147

    Article  Google Scholar 

  • Melsheimer J and Ziegler D 1985 Thin Solid Films 129 35

    Article  Google Scholar 

  • Nelli P, Faglia G, Sverbeglieri G, Cereda E, Garbetta G, Dieguez A, Rodriguez A R and Morante J R 2000 Thin Solid Films 249 371

    Google Scholar 

  • Pana X Q and Fu L 2001 J. Appl. Phys . 89 6048

    Article  Google Scholar 

  • Ryzhikov A S, Vasiliev R B, Rumyantseva M N, Ryabova L I, Dosovitsky G A, Gilmutdinov A M, Kozlovsky V F and Gaskov A M 2002 Mater. Sci. Eng B96 268

    Article  Google Scholar 

  • Rohatgi A, Viverito T R and Slack L H 1974 J. Am. Ceram. Soc. 57 278

    Article  Google Scholar 

  • Shadia J Ikhmayies, Riyad N and Ahmad Bitar 2011 Phys. Scr. 84 055801

    Article  Google Scholar 

  • Span S, Teng X M, Fan H T and Li G H 2006 J. Appl. Phys. A.

  • Sreetama Dutta, Chattopadhyay S, Sarkar A, Mahuya Chakrabarti, Sanyal D and Jana D 2009 Prog. Mater. Sci. 54 89

    Article  Google Scholar 

  • Sung Uk Lee, Jin-Hyo Boo and Byungyou Hong 2011 Jpn. J. Appl. Phys. 50 01AB10

    Article  Google Scholar 

  • Sunita Mishra, Ghanshyam C, Nathai Ram, Satinder Singh, Bajpai R P and Bedi R K 2002 Bull. Mater. Sci. 25 231

    Article  Google Scholar 

  • Urbach F 1953 Phys. Rev. 92 1324

    Article  Google Scholar 

  • Varghese O K and Malhotra L K 2000 J. Appl. Phys. 87 7457

    Article  Google Scholar 

  • Watanabe H 1970 Jpn. J. Appl. Phys. 9 1551

    Article  Google Scholar 

  • Yu P Y and Cardona M 1999 Fundamentals of semiconductors (Berlin: Springer-Verlag) 2nd ed.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Zarrinkhameh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrinkhameh, M., Zendehnam, A., Hosseini, S.M. et al. Effect of oxidation and annealing temperature on optical and structural properties of SnO2 . Bull Mater Sci 37, 533–539 (2014). https://doi.org/10.1007/s12034-014-0702-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0702-1

Keywords

Navigation