Skip to main content
Log in

Structural, Optical and Electrical Properties of ZnO Thin Films Prepared by Spray Pyrolysis: Effect of Precursor Concentration

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

ZnO thin films have been prepared using zinc acetate precursor by spray pyrolytic decomposition of zinc acetate on glass substrates at 450 °C. Effect of precursor concentration on structural and optical properties has been investigated. ZnO films are polycrystalline with (002) plane as preferential orientation. The optical transmission spectrum shows that transmission increases with decrease in the concentration and the maximum transmission in visible region is about 95% for ZnO films prepared with 0·1 M. The direct bandgap value decreases from 3·37 to 3·19 eV, when the precursor concentration increases from 0·1 to 0·4 M. Photoluminescence spectra at room temperature show an ultraviolet (UV) emission at 3·26 eV and two visible emissions at 2·82 and 2·38 eV. Lowest resistivity is obtained at 2·09 Ω cm for 0·3 M. The current– voltage characteristic of the ZnO thin films were measured in dark and under UV illumination. The values of photocurrent and photoresponsivity at 5 V are increased with increase in precursor concentration and reaches to maximum value of 1148 μA and 0·287 A/W, respectively which is correlated to structural properties of ZnO thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alver, U., T. Kilinc, E. Bacaksiz, T. Kucukomeroglu, S. Nezir, I.H. Mutlu, and F. Aslan. 2007. Thin Solid Films 515: 3448.

    Article  Google Scholar 

  • Ashour, A., M.A. Kaid, N.Z. El-Sayed, and A.A. Ibrahim. 2006. Appl. Surf. Sci. 252: 7844.

    Article  Google Scholar 

  • Basak, D., G. Amin, B. Mallik, G.K. Paul, and S.K. Sen. 2003. J. Cryst. Growth 256: 73.

    Article  Google Scholar 

  • Brinker, C.J., and G.W. Scherer. 1975. Sol–gel science: the physics and chemistry of sol–gel processing, 87. New York: Academic Press.

    Google Scholar 

  • Cao, H., J.Y. Xu, E.W. Seelig, and R.P.H. Chang. 2000. Appl. Phys. Lett. 76: 2997.

    Article  Google Scholar 

  • Cullity, B.D., and S.R. Stock. 2001. Elements of X-ray diffraction. New Jersey: Prentice Hall.

    Google Scholar 

  • Djurisic, A.B., and Y.H. Leung. 2006. Small 2: 944.

    Article  Google Scholar 

  • Dong, L., Y.C. Liu, Y.H. Tong, and Z.Y. Xiao. 2005. J. Coll. Interf. Sci. 283: 380.

    Article  Google Scholar 

  • Dutta, M., S. Mridha, and D. Basak. 2008. Appl. Surf. Sci. 254: 2743.

    Article  Google Scholar 

  • Fay, S., U. Kroll, C. Bucher, E. Vallat-Sauvain, and A. Shah. 2005. Sol. Energy Mater. Sol. Cells 86: 385.

    Article  Google Scholar 

  • Fortunato, E., A. Goncalves, A. Pimentel, P. Barquinha, G. Goncalves, L. Pereira, I. Ferreira, and R. Martins. 2009. Appl. Phys. A 96: 197.

    Article  Google Scholar 

  • Ghosh, R., D. Basak, and S. Fujihara. 2004. J. Appl. Phys. 96: 2689.

    Article  Google Scholar 

  • Girtan, M., G.G. Rusu, S. Dabos-Seignon, and M. Rusu. 2008. Appl. Surf. Sci. 254: 4179.

    Article  Google Scholar 

  • Huang, B., G. He, and H. Yang. 2010. Physica B 405: 4101.

    Article  Google Scholar 

  • Hupkes, J., B. Rech, O. Kluth, T. Repmann, B. Zwayagardt, J. Muller, R. Drese, and M. Wutting. 2006. Sol. Energy Mater. Sol. Cells 90: 3054.

    Article  Google Scholar 

  • Leary, D.J., J.O. Bornes, and A.G. Jordon. 1982. J. Electrochem. Soc. 129: 1382.

    Article  Google Scholar 

  • Liu, A., J. Zhang, and Q. Wang. 2011. Chem. Eng. Comm. 198: 494.

    Article  Google Scholar 

  • Liu, C.Y., B.P. Zhang, W. Lu, N.T. Binh, K. Wakatsuki, Y. Segawa, and R. Mu. 2009. J. Mater. Sci. 20: 197.

    Google Scholar 

  • Liu, J.M., Y.B. Xia, L.J. Wanga, Q.F. Su, and W.M. Shi. 2007. J. Cryst. Growth 300: 353.

    Article  Google Scholar 

  • Lokhande, B.J., and M.D. Uplane. 2000. Appl. Surf. Sci. 167: 243.

    Article  Google Scholar 

  • Luo, L., Y. Zhang, S.S. Mao, and L. Lin. 2006. Sens. Actuators A 127: 201.

    Article  Google Scholar 

  • Martins, R., E. Fortunato, P. Nunes, I. Ferreira, and A. Marques. 2004. J. Appl. Phys. 96: 1398.

    Article  Google Scholar 

  • Mishra, D., K.C. Dubey, R.K. Shukla, A. Srivastava, and A. Srivastava. 2009. Sens. Trans. J. 105: 119.

    Google Scholar 

  • Monroy, E., F. Omnes, and F. Calle. 2003. Semicond. Sci. Tech. 18: 33.

    Article  Google Scholar 

  • Mridha, S., and D. Basak. 2006. Chem. Phys. Lett. 427: 62.

    Article  Google Scholar 

  • Mridha, S., and D. Basak. 2007. Mater. Res. Bull. 42: 875.

    Article  Google Scholar 

  • Nunes, P., E. Fortunato, A. Lopes, and R. Martins. 2001. Int. J. Inorg. Mater. 3: 1129.

    Article  Google Scholar 

  • Nunes, P., A. Malik, B. Fernandes, E. Fortunato, P. Vilarinho, and R. Martins. 1999. Vacuum 52: 45.

    Article  Google Scholar 

  • Pankove J I 1971 Optical processes in semiconductors (New York: Dover Publication) Ch. 2, p. 22

  • Prasada Rao, T., and M.C. Santhoshkumar. 2009. Appl. Surf. Sci. 255: 4579.

    Article  Google Scholar 

  • Rozati, S.M., F. Zarenejad, and N. Memarian. 2011. Thin Solid Films 520: 1259.

    Article  Google Scholar 

  • Saito, N., H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto. 2002. Adv. Mater. 14: 418.

    Article  Google Scholar 

  • Salvatori, S., E. Pace, M.C. Rossi, and F. Galluzzi. 1997. Diam. Relat. Mater. 6: 361.

    Article  Google Scholar 

  • Schroder, D.K. 1998. Semiconductor material and device characterization. New York: Wiley.

    Google Scholar 

  • Sharma, P., K. Sreenivas, and K.V. Rao. 2003. J. Appl. Phys. 93: 3963.

    Article  Google Scholar 

  • Srikant, V., and D.R. Clarke. 1997. J. Appl. Phys. 81: 6357.

    Article  Google Scholar 

  • Suhail, A.M., E.K. Hassan, S.S. Ahmed, and M.K.M. Alnoori. 2010. J. Electr. Dev. 8: 268.

    Google Scholar 

  • Vanheusden, K., W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade. 1996. J. Appl. Phys. 79: 7983.

    Article  Google Scholar 

  • Wu, Y., E. Girgis, V. Strom, W. Voit, L. Belova, and K.V. Rao. 2011. Phys. Status Solidi A 208: 206.

    Article  Google Scholar 

  • Xingwen, Z., L. Yongqiang, L. Ye, L. Yingwei, and X. Yiben. 2006. Vacuum 81: 502.

    Article  Google Scholar 

  • Yim, J.H., et al. 2003. Mat. Res. Soc. Symp. Proc. 766: E8.10.1.

    Google Scholar 

  • Zahedi, F., and R.S. Dariani. 2012. Thin Solid Films 520: 2132.

    Article  Google Scholar 

  • Zahedi, F., R.S. Dariani, and S.M. Rozati. 2013. Mater. Sci. Semicond. Process. 16: 245.

    Article  Google Scholar 

  • Zaier, A., F. OumElaz, F. Lakfif, A. Kabir, S. Boudjadar, and M.S. Aida. 2009. Mater. Sci. Semicond. Process. 12: 207.

    Article  Google Scholar 

  • Zhang, H.Z., X.C. Sun, R.M. Wang, and D.P. Yu. 2004. J. Cryst. Growth 269: 464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Dariani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedi, F., Dariani, R.S. & Rozati, S.M. Structural, Optical and Electrical Properties of ZnO Thin Films Prepared by Spray Pyrolysis: Effect of Precursor Concentration. Bull Mater Sci 37, 433–439 (2014). https://doi.org/10.1007/s12034-014-0696-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0696-8

Keywords

Navigation