Skip to main content
Log in

Study of effect of chromium on titanium dioxide phase transformation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

MTiX samples with different atomic chromium percentages were synthesized by sol–gel method and calcined at 400 °C under air. The effects of Cr and temperature on titanium dioxide phase transition were studied. In situ measurement showed the presence of anatase phase for all samples at temperature < 500 °C. Without Cr content, the anatase–rutile transition takes place at 600 °C and the rutile fraction increases with increase of temperature. In the presence of Cr content, rutile phase appeared at 700 °C. Cr2O3 phase was shown only in the case of CrTi20 content at 800 °C which indicates that the segregation remains modest. We have also studied the anatase–rutile transition kinetics by using in situ X-ray measurements. It was found that the anatase phase stability increases as the chromium content increases. Results confirm that the transformation of anatase–rutile is of first order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldabergenova, S.B., A. Ghicov, S. Albus, J.M. Macak, and P. Schmuki. 2008. J. Non-Cryst. Solids 354: 2190.

    Article  Google Scholar 

  • Arroyo, R., G. Cordoba, J. Padilla, and V.H. Lara. 2002. Mater. Lett. 54: 397.

    Article  Google Scholar 

  • Bacsa, R.R., and J. Kiwi. 1998. Appl. Catal. B: Environ. 16: 19.

    Article  Google Scholar 

  • Baltazar, P., V.H. Lara, G. Cordoba, and R. Arroyo. 2006. J. Sol–Gel. Sci. Technol. 37: 129.

    Article  Google Scholar 

  • Barakat, M.A., H. Schaeffer, G. Hayes, and S. Ismat-Shah. 2005. Appl. Catal. B: Environ. 57: 23.

    Article  Google Scholar 

  • Bellifa, A., D. Lahcene, Y.N. Techenar, A. Choukchou-Braham, R. Bachir, S. Bedrane, and C. Kappenstein. 2006. Appl. Catal. A: Gen. 305: 1.

    Article  Google Scholar 

  • Chao, H.E., Y.U. Yun, H.U. Xingfang, and A. Larbot. 2003. J. Eur. Ceram. Soc. 23: 1457.

    Article  Google Scholar 

  • Djaoued, Y., S. Badilescu, P.V. Ashrit, D. Bersani, P.P. Lottici, and J. Robichaud. 2002. J. Sol–Gel. Sci. Technol. 24: 255.

    Article  Google Scholar 

  • Finnegan, M.P., H. Zhang, and J.F. Banfield. 2007. J. Phys. Chem. C111: 1962.

    Google Scholar 

  • Gambhire, A.B., M.K. Lande, A.B. Mandale, K.R. Patil, and B.R. Arbad. 2008. Philos. Mag. 88: 767.

    Article  Google Scholar 

  • Ha, P.S., H.J. Youn, H.S. Jung, K.S. Hong, Y.H. Park, and K.H. Ko. 2000. J. Colloid. Interf. Sci. 223: 16.

    Article  Google Scholar 

  • Houskova, V., V. Stengl, S. Bakardjieva, N. Murafa, and V. Tyrpekl. 2009. Appl. Catal. B. Environ 89: 613.

    Article  Google Scholar 

  • Hu, Y., H.L. Tsai, and C.L. Huang. 2003a. Mater. Sci. Eng. A344: 209.

    Article  Google Scholar 

  • Hu, Y., H.L. Tsai, and C.L. Huang. 2003b. J. Eur. Ceram. Soc 23: 691.

    Article  Google Scholar 

  • Jiang, X., and X. Chen. 2004. J. Cryst. Growth 270: 547.

    Article  Google Scholar 

  • Lee, M.S., G. Lee, C. Ju, and S. Hong. 2005. Sol. Energ. Mat. Sol. C88: 389.

    Article  Google Scholar 

  • Li, W., C. Ni, H. Lin, C.P. Huang, and S.I. Shah. 2004. J. Appl. Phys. 96: 6663.

    Article  Google Scholar 

  • Li, J., Q. Li, Y. Ye, and Y. Hao. 2011. J. Alloys Compd. 509: 5532.

    Article  Google Scholar 

  • Li, Z., B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu, and F. Deng. 2005. J. Solid State Chem. 178: 1395.

    Article  Google Scholar 

  • Ma, Q., S.J. Liu, L.Q. Weng, Y. Liu, and B. Liu. 2010. J. Alloys Compd. 501: 333.

    Article  Google Scholar 

  • Mahanty, S., S. Roy, and S. Sen. 2004. J. Cryst. Growth 261: 77.

    Article  Google Scholar 

  • Niemeyer, D., D.E. Williams, P. Smith, K.F.E. Pratt, B. Slater, C.R.A. Catlow, and A.M. Stoneham. 2002. J. Mater. Chem. 12: 667.

    Article  Google Scholar 

  • Pavasupree, S., Y. Suzuki, S. Pivsa-Art, and S. Yoshikawa. 2005. J. Solid State Chem. 178: 128.

    Article  Google Scholar 

  • Pillai, S.C., et al. 2007. J. Phys. Chem. C11: 1605.

    Google Scholar 

  • Popa A F, Courtheoux L, Gautron E, Rossignol S and Kappenstein C 2005 Eur. J. Inorg. Chem. 543

  • Rajesh Kumar, S., S.C. Pillai, U.S. Hareesh, P. Mukundan, and K.G.K. Warrier. 2000. Mater. Lett. 43: 286.

    Article  Google Scholar 

  • Reddy, B.M., I. Ganesh, E.P. Reddy, A. Fernandez, and P.G. Smirniotis. 2001. J. Phys. Chem. B105: 6227.

    Article  Google Scholar 

  • Reidy, D.J., J.D. Holmes, C. Nagle, and M.A. Morris. 2005. J. Mater. Chem. 15: 3494.

    Article  Google Scholar 

  • Riays, S., G. Krishnan, and P.N. Mohan Das. 2007. Adv. Appl. Ceram. 106: 255.

    Article  Google Scholar 

  • Ruiza, A.M., G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, and N. Yamazoe. 2003. Sens. Actuators B. Chem. 93: 509.

    Article  Google Scholar 

  • Setiawati, E., and K. Kawano. 2008. J. Alloys Compd. 451: 293.

    Article  Google Scholar 

  • Sreethawong, T., Y. Suzuki, and S. Yoshikawa. 2005. J. Solid State Chem. 178: 329.

    Article  Google Scholar 

  • Wang, C., Q. Li, and R. Wang. 2004. Mater. Lett. 58: 1424.

    Article  Google Scholar 

  • Wetchakun, N., and S. Phanichphant. 2008. Curr. Appl. Phys. 8: 343.

    Article  Google Scholar 

  • Yoo K, Choi H and Dionysiou D D 2004 Chem. Commun. 2000

  • Zhang, H., and J.F. Banfield. 1998. Mater. Res. Soc. 481: 619.

    Article  Google Scholar 

  • Zhang, H., and J.F. Banfield. 2005. Chem. Mater. 17: 3421.

    Article  Google Scholar 

  • Zhang, H., and J.F. Banfield. 2000. J. Phys. Chem. B104: 3481.

    Article  Google Scholar 

  • Zhang, Q., Q. Li, J. Li, and R. Bai. 2011. Chinese J. Chem. Phys. 24: 85.

    Article  Google Scholar 

  • Zhang, R.B. 2005. J. Non-Cryst. Solids 351: 2129.

    Article  Google Scholar 

  • Zhu, K.R., M.S. Zhang, J.M. Hong, and Z. Yin. 2005. Mater. Sci. Eng. A403: 87.

    Article  Google Scholar 

  • Zhuang, K., J. Qiu, F. Tang, B. Xu, and Y. Fan. 2011. Phys. Chem. Chem. Phys. 13: 4463.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Bellifa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 433 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellifa, A., Pirault-Roy, L., Kappenstein, C. et al. Study of effect of chromium on titanium dioxide phase transformation. Bull Mater Sci 37, 669–677 (2014). https://doi.org/10.1007/s12034-014-0674-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0674-1

Keywords

Navigation