Skip to main content

Low Resistance Polycrystalline Diamond Thin Films Deposited by Hot Filament Chemical Vapour Deposition

Abstract

Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications.

This is a preview of subscription content, access via your institution.

References

  1. Abbas, T., M. Ullah, A.M. Rana, and R.M. Arif Khalil. 2007. Mater. Sci. Poland 25: 1161.

    Google Scholar 

  2. Bataineh, M., S. Khatami, and J. Asmussen Jr. 2005. J. Mater. Process Technol. 169: 26.

    Article  Google Scholar 

  3. Buckley, G., T.D. Moustakas, L. Ye, and J. Voiron. 1989. J. Appl. Phys. 66: 3595.

    Article  Google Scholar 

  4. Celii, F.G., D. White Jr., and A.J. Purdes. 1991. J. Appl Phys. 70: 5636.

    Article  Google Scholar 

  5. Chen X, Sullivan J, Friedmann T and Murray Gibson J 2004 Microsci. Microanal. 10 (Suppl 2)

  6. Chen, W., X. Lu, Q. Yang, C. Xiao, R. Sammynaiken, and J. Maley. 2006. Thin Solid Films 515: 1970.

    Article  Google Scholar 

  7. Davis, R.F. 1992. Diamond films and coatings, 381. New Jersey: Noyes Publications.

    Google Scholar 

  8. Fan, Q.H., E. Pereira, and J. Cracio. 1999. J. Mater. Sci. 34: 1353.

    Article  Google Scholar 

  9. Filik, J. 2005. Spectro. Euro. 17: 10.

    Google Scholar 

  10. Goodwin, D.G. 1993. J. Appl. Phys. 74: 6888.

    Article  Google Scholar 

  11. Hirakuri, K.K., T. Kobayashi, E. Nakamura, N. Mutsukura, G. Friedbacher, and Y. Machi. 2001. Vacuum 63: 449.

    Article  Google Scholar 

  12. Huang, J.Yu., R. Wen, and L.C. Shi. 1997. Mater. Lett. 32: 143.

    Article  Google Scholar 

  13. Kobayashi, T., K.K. Hirakuri, N. Mutsukura, and M. Machi. 1999. Diamond Relat Mater. 8: 1057.

    Article  Google Scholar 

  14. Li, X., J. Perkin, R. Collazo, R.J. Nimanich, and Z. Sitar. 2006. Diamond Relat Mater. 15: 1784.

    Article  Google Scholar 

  15. Lu, X., Q. Yang, C. Xiao, and A. Hirose. 2007. Diamond Relat Mater. 16: 1623.

    Article  Google Scholar 

  16. Ma, K.L., W.J. Zhang, Y.S. Zou, Y.M. Chong, K.L. Leung, I. Bello, and S.T. Lee. 2006. Diamond Relat Mater. 15: 626.

    Article  Google Scholar 

  17. Okumura, Y., K. Kanayama, and K.-I. Shogaki. 2010. Combust Flame 157: 1052.

    Article  Google Scholar 

  18. Ralchenko, V., I. Sychov, I. Vlasov, A. Valsov, V. Konov, A. Khomich, and S. Voronina. 1999. Diamond Relat Mater. 8: 189.

    Article  Google Scholar 

  19. Rau, H., and F. Picht. 1992. J. Mater. Res. 7: 934.

    Article  Google Scholar 

  20. Schwarz, S., S.M. Rosiwal, M. Frank, D. Breidt, and R.F. Singer. 2002. Diamond Relat Mater. 11: 589.

    Article  Google Scholar 

  21. Shroder, R.E., R.J. Nemanich, and J.T. Glass. 1990. Phys. Rev. B41: 3738.

    Article  Google Scholar 

  22. Silva Gicquel, F.A., A. Tardieu, P. Cledat, and T. Chauveau. 1996. Diamond Relat Mater. 5: 338.

    Article  Google Scholar 

  23. Van der Pauw, L.J. 1958. Philips Res Rep. 13: 1.

    Google Scholar 

  24. Wada, N., and S.A.S. Olin. 1981. Physica B 105: 353.

    Article  Google Scholar 

  25. Yu, J., R. Huang, L. Wen, and C. Shi. 1998. J. Mater. Sci. Lett. 17: 1011.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Waqar Ahmed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ullah, M., Ahmed, E., Elhissi, A. et al. Low Resistance Polycrystalline Diamond Thin Films Deposited by Hot Filament Chemical Vapour Deposition. Bull Mater Sci 37, 579–583 (2014). https://doi.org/10.1007/s12034-014-0669-y

Download citation

Keywords

  • Carbon materials
  • chemical vapour deposition
  • crystal growth
  • thin films
  • electrical resistivity
  • grain size