Skip to main content
Log in

Synthesis and Characterization of Bio-Based Polyurethane from Benzoylated Cashewnut Husk Tannins

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Benzoylated tannin prepared by benzoylation of cashewnut husk tannin, was treated with hexamethylenediisocyanate in the presence of 1,4-butanediol as an extender to prepare thermosetting polyurethane. The sample was characterized using FT–IR and 13C NMR spectra. Thermal, morphological, physico-chemical and electrical properties were also investigated. Polyurethane obtained was sensitive to moisture but had very good solvent resistance. Results show that T g of the sample is 260 °C and thermal decomposition begins at 280 °C. The dielectric constant varies randomly with temperature. The conductivity of the sample was found to increase with increase in temperature but shows random variation at 90 and 150 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhunia, H.P., et al. 1999. Eur. Polym. J. 35: 1381.

    Article  Google Scholar 

  • Chen, A., H. Wang, B. Zhao, and X. Li. 2003. Synth. Met. 139: 411.

    Article  Google Scholar 

  • Clark, A. 2001. Low-cost synthesis and evaluation of polymers prepared from oilseed rape and Euphorbia Lagas-cae oil’s. Report No. OS47. Warwick, UK: University of Warwick, HGCA Project Report.

    Google Scholar 

  • Ismail, Eid A., et al. 2011. Egyptian J Petroleum 20: 1.

    Article  Google Scholar 

  • Howard, Gary T. 2002. Internat Biodeter. Biodegr. 49: 245.

    Article  Google Scholar 

  • Lligadas, Gerard, Juan C. Ronda, Marina Galia, and Virginia Cádiz. 2010. Biomacromolecules 11: 2825.

    Article  Google Scholar 

  • Guo, A., et al. 2000. J. Polym. Sci.: Polym. Chem. 38: 3900.

    Article  Google Scholar 

  • Hagerman, A.E., and L.G. Butler. 1978. J. Agric. Food Chem. 26: 809.

    Article  Google Scholar 

  • Mutlu, Hatice, et al. 2010. Euro. J. Lipid Sci. Tech. 112: 10.

    Article  Google Scholar 

  • Patel, Hemul V., et al. 2010. Int. J. Chem. Tech. Res. 2: 1.

    Article  Google Scholar 

  • Jin-jie, G.E. 1998. Bull. Kyushu Univ. For. 79: 21.

    Google Scholar 

  • Kalsi P S 2010 Spectroscopy of organic compounds (New Age International Publishers), 6th edn, Chapter 3

  • Ling Zhang 2008 Structure-Property Relationship of Polyurethane Flexible Foam Made from Natural Oil Polyols, A dissertaion submitted to the faculty of the graduate school of The University of Minnesota in partial fulfillment of the requirements for the degree of doctor of philosophy in chemical engineering & material science, Minneapolis, Minnesota

  • Lokeswari, N., D. Sriramireddy, Sudhakar Pola, and Varaprasad Bobbarala. 2010. J. Pharm. Res. 3: 906.

    Google Scholar 

  • Malhotra S 2011 Electronic Bazaar http://electronicsb2b.com/trends/pcb-undergoing-changes-to-meet-advancementin-defence-equipment/

  • Mihail Ionescu 2005 Chemistry and Technology of Polyols for Polyurethanes (Rapra Technology Limited)

  • Mothe, C.G., and C.R. de ArauÂjo. 2000. Thermoch. Acta 357–358: 321.

    Article  Google Scholar 

  • Akram, Muhammad, Athar Javed, and Tasneem Zahar Rizvi. 2005. Turkish J Phys. 29: 355.

    Google Scholar 

  • Mythili, C.V., A. Malar Retna, and S. Gopalakrishnan. 2004. Bull. Mater. Sci. 27: 235.

    Article  Google Scholar 

  • Narayan, R. 2006. Degradable Polym Mater. 939: 282.

    Article  Google Scholar 

  • Omed, G.H., Abdullah, Gelas M. Jamal, Dana A. Tahir, and Salah R. Saeed. 2011. Inter. J. Appl. Phys. Maths. 1: 101.

    Google Scholar 

  • Petrovic, Z.S. 2008. J. Appl. Sci. B108: 1184.

    Article  Google Scholar 

  • Pillai, C.K.S. 2010. Des. Monomers Polym. 13: 87.

    Article  Google Scholar 

  • Pizzi, A. 1979. J. Appl. Poly. Sci. 23: 1889.

    Article  Google Scholar 

  • Pizzi, A. 1982. Ind. Eng. Chem. Prod. Res. Dev. 21: 359.

    Article  Google Scholar 

  • Raquez, J.M., M. Deléglise, M.F. Lacrampe, and P. Krawczak. 2010. Prog. Polym. Sci. 35: 487.

    Article  Google Scholar 

  • Sharma, O.P., T.K. Bhat, and B. Singh. 1998. J. Chromatogr. 822: 167.

    Article  Google Scholar 

  • Tan, and Chow. 2011. eXPRESS Polym Lett. 5: 480.

    Article  Google Scholar 

  • Vinicius Pistor, Daniela de Conto, Felipe Gustavo Ornaghi and Ademir Jos’e Zattera 2012 J. Nanomater. Article ID 283031, 8 pages doi: 10.1155/2012/283031 Vinod kumar K P and Sethuraman G M 2004 Prog. Org. Coat. 49 244

  • Vikram S Yadav, Davendra K Sabu and Dhubkarya D C 2010 Proc. IMECS Hong Kong, 3: ISSN 2078-0966 (online)

  • Shah, Vishnu. 1954. Hand book of polymer technology. New York: Inter Science Wiley Publications.

    Google Scholar 

  • Yu Ping, W.E.I., Fa. Cheng, L.I. Hou Ping, and Y.U. Jiu Gao. 2005. Chinese Chem Lett. 16: 401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Sunija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunija, A.J., Ilango, S.S. & Kumar, K.P.V. Synthesis and Characterization of Bio-Based Polyurethane from Benzoylated Cashewnut Husk Tannins. Bull Mater Sci 37, 735–741 (2014). https://doi.org/10.1007/s12034-014-0665-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0665-2

Keywords

Navigation