Skip to main content
Log in

Solvothermal growth of single-crystal CdS nanowires

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) nanowires (NWs) were prepared by the solvothermal method using ethylenediamine as a solvent. Two sets of CdS NWs were synthesized at 160 and 200 °C for various reaction durations (3⋅5, 7, and 24 h). Scanning/tunneling electron microscopy was used to examine the surface morphology of the grown NWs. Their dimensions are found to depend on the reaction temperature and duration. The CdS NWs grown at 200 °C for all durations are longer than those prepared at 160 °C, with diameters ranging from 15 to 40 nm. A three-armed structure is exhibited by all the samples. The grown CdS NWs display a hexagonal wurtzite phase and grows along the \(\mathbf {\left \langle {001}\right \rangle }\) direction. The optical absorption of the grown NWs shows a sharp absorption edge with a blueshift, which indicates an expansion of the optical band gap. All prepared samples show two emission peaks in their photoluminescence spectra. The emission peak location depends on the reaction temperature and duration. The CdS NWs prepared at 160 °C show a sharp band–band emission compared with those prepared at 200 °C. Raman analysis indicates that the optical properties of the grown NWs are enhanced with increased temperature and reaction duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahmad-Bitar R N 2000 Renew. Energ. 19 579

  • Arguello C A, Rousseau D L and Porto S P S 1969 Phys. Rev. 181 1351

  • Cao B L, Jiang Y, Wang C, Wang W H, Wang L Z, Niu M, Zhang W J, Li Y Q and Lee S T 2007 Adv. Funct. Mater. 17 1501

  • Chen S W and Wu J M 2011 Acta Mater. 59 841

  • Chen M, Xie Y, Lu J, Xiong Y, Zhang S, Qian Y and Liu X 2002 J. Mater. Chem. 12 748

  • Choi Y J, Park K S and Park J G 2010 Nanotechnol. 21 509901

  • Dalvand P and Mohammadi M R 2011 J. Nanopart. Res. 13 3011

  • Dalvand P, Mohammadi M R and Fray D J 2011 Matter. Lett. 65 1291

  • Datta A, Chavan P G, Sheini F J, More M A, Joag D S and Patra A 2009 Cryst. Growth Des. 9 4157

  • Jang J S, Joshi U A and Lee J S 2007 J. Phys. Chem. C 111 13280

  • Kar S and Chaudhuri S 2006 J. Phys. Chem. B 110 4542

  • Kar S, Santra S and Heinrich H 2008 J. Phys. Chem. C 112 4036

  • Li Q H, Gao T and Wang T H 2005 Appl. Phys. Lett. 86 193109

  • Li L, Wu P, Fang X, Zhai T, Dai L, Liao M, Koide Y, Wang H Q, Bando Y and Golberg D 2010 Adv. Mater. 22 3161

  • Ma R M, Wei X L, Dai L, Huo H D and Qin G G 2007 Nanotechnol. 18 205605

  • Mahdi M A, Hassan J J, Ng S S and Hassan Z 2012a Phys. E 44 1716

  • Mahdi M A, Hassan Z, Ng S S, Hassan J J and Mohd Bakhori S K 2012b Thin Solid Films 520 3477

  • Mahdi M A, Hassan J J, Ng S S and Hassan Z 2012c J. Cryst. Growth 359 43

  • Mahdi M A, Asmiet Ramzy, Hassan Z, Ng S S, Hassan J J and Kasim S K 2012d Chalcogen. Letts. 9 19

  • Mondal S P, Dhar A and Ray S K 2007a Mat Sci. Semicon. Proc. 10 185

  • Mondal S P, Das K, Dhar A and Ray S K 2007b Nanotechnol. 18 095606

  • Nien Y T, Chen P W and Chen I J 2008 J. Alloys Compd. 462 398

  • Nirmala Jothi N S, Chisty P D, Baby Suganthi A R, Ramalingam G and Sagayaraj P 2011 J. Crys. Growth 316 126

  • Owens F J and Poole C P 2008 The physics and chemistry of nanosolids (Hoboken, New Jersey, USA: John Wiley & Sons Inc.)

  • Pan A L, Liu R B, Yang Q, Zhu Y C, Yang G Z, Zou B S and Chen K Q 2005 J. Phys. Chem. B 109 24268

  • Phuruangrat A, Thongtoem T and Thongtoem S 2009 Mater. Lett. 63 1538

  • Phuruangrat A, Thongtem T and Thongten S 2010 Chalcogen. Letts. 7 605

  • Qingqing W, Gang X and Gaorong H 2005 J. Solid State Chem. 178 2680

  • Rai P, Song H M, Kim Y S, Song M K, Oh P R, Yoon J M and Yu Y T 2012 Mater. Lett. 68 90

  • Sadhu S, Chowdhury P S and Patra A 2008 J. Lumin. 128 1235

  • Thupakula U, Jena A, Khan A H, Dalui A and Acharya S 2012 J. Nanopart. Res. 14 701

  • Tsai C T, Chuu D S, Chen G L and Yang S L 1996 J. Appl. Phys. 79 9105

  • Wang Y W, Meng G W, Zhang L D, Liang C H and Zhang J 2002 Chem. Mater. 14 1773

  • Wang X, Liu W, Yang H, Li X, Li N, Shi R, Zhao H and Yu J 2011 Acta Mater. 59 1291

  • Xi Y, Hu C, Zheng C, Zhang H, Yang R and Tian Y 2010 Mater. Res. Bull. 45 1476

  • Xu D, Liu Z, Liang J and Qian Y 2005 J. Phys. Chem. B 109 14344

  • Yan S, Sun L, Qu P, Huang N, Song Y and Xiao Z 2009 J. Solid State Chem. 182 2941

  • Yingkai L, Xiangping Z, Dedong H and Hui W 2006 J. Mater. Sci. 41 6492

  • Zhou J, Zhao G, Yang J and Hano G 2011 J. Alloys Compd. 509 6731

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Research University (RU) grant and the University Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A MAHDI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAHDI, M.A., HASSAN, J.J., KASIM, S.J. et al. Solvothermal growth of single-crystal CdS nanowires. Bull Mater Sci 37, 337–345 (2014). https://doi.org/10.1007/s12034-014-0655-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0655-4

Keywords

Navigation