Bulletin of Materials Science

, Volume 37, Issue 2, pp 247–255 | Cite as

Chemical bath deposition of CdS thin films doped with Zn and Cu

  • A I OLIVAEmail author


Zn- and Cu-doped CdS thin films were deposited onto glass substrates by the chemical bath technique. ZnCl2 and CuCl2 were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effect of the deposition time and the doping concentration on the physical properties of CdS films were investigated. The morphology, thickness, bandgap energy, crystalline structure and elemental composition of Zn- and Cu-doped CdS films were investigated and compared to the undoped CdS films properties. Both Zn- and Cu-doped CdS films presented a cubic crystalline structure with (1 1 1) as the preferential orientation. Lower values of the bandgap energy were observed for the doped CdS films as compared to those of the undoped CdS films. Zn-doped CdS films presented higher thickness and roughness values than those of Cu-doped CdS films. From the photoluminescence results, it is suggested that the inclusion of Zn and Cu into CdS crystalline structure promotes the formation of acceptor levels above CdS valence band, resulting in lower bandgap energy values for the doped CdS films.


Cadmium sulfide chemical bath deposition doping optical window 



Authors thank to Drs C Gutiérrez-Lazos and P Quintana for the fruitful discussions. Technical support of MSc Daniel Aguilar is also strongly appreciated.


  1. Aguilar-Hernández J, Sartre-Hernández J, Mendoza-Perez R, Contreras-Puente G, Cárdenas-García M and Ortíz-López J 2006 Sol. Energy Mater. Solar Cells 90 704CrossRefGoogle Scholar
  2. Barabasi A L and Stanley H E 1995 Fractal concepts in surface growth. (Cambridge: Cambridge University PressCrossRefGoogle Scholar
  3. Cullity B D 1978 Elements of X-ray diffraction (MA, USA: Addison-Wesley Reading)Google Scholar
  4. Dávila-Pintle J A, Lozada-Morales R, Palomino-Merino M R, Rivera-Márquez J A, Portillo-Moreno O and Zelaya-Angel O 2007 J. Appl. Phys. 101 013712CrossRefGoogle Scholar
  5. Glinka Y D, Lin S H, Hwang L P, Chen Y T and Tolk N H 2001 Phys. Rev. B64 085421CrossRefGoogle Scholar
  6. Greenwood N N and Earnshaw A 1997 Chemistry of the elements Butterworth–Heinemann. ISBN: 0080379419 2nd ednGoogle Scholar
  7. Herrera S, Ramos C M, Patiño R, Peña J L, Cauich W, Oliva A I 2006 Brazilian J. Phys. 36 1054CrossRefGoogle Scholar
  8. Hubert C, Nagavi N, Canava B, Etcheverry A and Lincot D 2007 Thin Solid Films 515 6032CrossRefGoogle Scholar
  9. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovolt: Res. Appl. 19 g894CrossRefGoogle Scholar
  10. Jafari A, Zakaria A, Rizwan Z and Mohd Ghazali M S 2011 Int. J. Mol. Sci. 12 6320CrossRefGoogle Scholar
  11. JCPDS 2002 International Centre for Diffraction Data. Reference 42–1411Google Scholar
  12. Kato H, Sato J, Abe T and Kashiwaba Y 2004 Phys. Status Solidi (C) 1 653CrossRefGoogle Scholar
  13. Kazmerski L L 2006 J. Electron Spectrosc. Relat. Mater. 150 105CrossRefGoogle Scholar
  14. Khallaf H, Chai G, Chow L, Park S and Schulte A 2008 J. Phys. D: Appl. Phys. 41 185304CrossRefGoogle Scholar
  15. Kim N H, Ryu S H, Noh H S and Lee W S 2012 Mater. Sci. Semicond. Process 15 125CrossRefGoogle Scholar
  16. Lee J H, Lee Y H, Ki J H and Park Y K 2000 Jpn. J. Appl. Phys. Part 1 39 1669CrossRefGoogle Scholar
  17. Mahdi M A, Kasem S J, Hassen J J, Swadi A A and Al-Ani S K J 2009 Int. J. Nanoelectr. Mater. 2 163Google Scholar
  18. Moualkia H, Hariech S, Aida M S, Attaf N and Laifa E L 2009 J. Phys. D: Appl. Phys. 42 135404CrossRefGoogle Scholar
  19. Oliva A I, Castro-Rodriguez R, Solis-Canto O, Sosa Victor, Quintana P and Peña J L 2003 Appl. Surf. Sci. 205 56CrossRefGoogle Scholar
  20. Oliva-Avilés A I, Patiño R and Oliva A I 2010 Appl. Surf. Sci. 256 6090CrossRefGoogle Scholar
  21. Oliva A I, Solís-Canto O, Castro-Rodríguez R and Quintana P 2001 Thin Solid Films 391 28CrossRefGoogle Scholar
  22. Osipyonok N M, Singaevsky A F, Noskov Y V, Piryatinski Y P, Smertenko P S, Dimitriev O P and Pud A A 2008 J. Mater. Sci. Eng. B147 254CrossRefGoogle Scholar
  23. Paudel N R, Wieland K A and Compaan A D 2012 Sol. Energy Mater. Sol. Cells 105 109CrossRefGoogle Scholar
  24. Portillo-Moreno O et al 2006 J. Electrochem. Soc. 153 G926CrossRefGoogle Scholar
  25. Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B and Noufi R 2008 Prog. Photovolt: Res. Appl. 16 235CrossRefGoogle Scholar
  26. Reyes P and Velumani F 2012 Mater. Sci. Engg. B177 1452CrossRefGoogle Scholar
  27. Rios-Flores A, Ares O, Camacho J M, Rejón V and Peña J L 2012 Solar Energy 86 780CrossRefGoogle Scholar
  28. Romeo A, Khrypunov G, Kurdesau F, Arnold M, Batzner D L, Zogg H and Tiwar A N 2006 Sol. Energy Mater. Sol. Cells 90 3407CrossRefGoogle Scholar
  29. Roy P and Srivastava S K 2006 J. Phys. D: Appl. Phys. 39 4771CrossRefGoogle Scholar
  30. Sebastian P J 1993 Appl. Phys. Lett. 62 2956CrossRefGoogle Scholar
  31. Shaha N A, Sagar R R, Mahmooda W and Syed W A A 2012 J. Alloys Compd. 512 185CrossRefGoogle Scholar
  32. Tauc J J 1976 Amorphous and liquid semiconductor. (New York: Plenum)Google Scholar
  33. Tauc J J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 15 627CrossRefGoogle Scholar
  34. Tec-Yam S, Patiño R and Oliva A I 2011 Current Appl. Phys. 11 914CrossRefGoogle Scholar
  35. Wu X 2004 Solar Energy 77 803CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

    • 1
    Email author
    • 1
    • 1
    • 1
  1. 1.Departamento de Física AplicadaCentro de Investigación y de Estudios Avanzados del IPN Unidad MéridaMérida YucatánMexico

Personalised recommendations