Abstract
Porous carbons with a well developed graphitic phase were obtained via the pyrolysis of FeCl3-, NiCl2-, and CoCl2-doped organic xerogels. Doping was realized through salt solubilization in a water/methanol solution of resorcinol and furfural. Carbon xerogels with tailored particles, porous morphology and various degrees of graphitization were obtained depending of the water/methanol ratio and the salt content and type in the starting solution of substrates. When obtained via pyrolysis, carbon xerogels retain the overall open-celled structure exhibiting depleted microporosity and a well-developed mesoporic region that expands into macropores. The removal of metal leads to carbon xerogels with specific surface areas between 170 and 585 m2/g and pore volume up to 0·76 cm3/g. The possibility of enhancing the porosity of xerogels via templating with colloidal silica was also investigated. It was assumed that from the three investigated salts, FeCl3 makes the best choice for graphitization catalyst precursor to obtain uniformly graphitized mesoporous carbon xerogels. The obtained carbon samples were characterized by means of SEM, TEM, X-ray diffraction, Raman spectroscopy, N2 physisorption and thermogravimetric analysis.
This is a preview of subscription content, access via your institution.











References
Chuenchom L, Kraehnert R and Smarsly B M 2012 Soft Matter 8 10801
Fu R, Baumann T F, Cronin S, Dresselhaus G, Dresselhaus MS and Satcher J H Jr 2005 Langmuir 21 2647
Fuertes A B and Alvarez S 2004 Carbon 42 3049
Gao W,Wan Y, Dou Y and Zhao D 2011 Adv. Energy Mater. 1 115
Han S, Yun Y, Park K-W, Sung Y-E and Hyeon T 2003 Adv. Mater. 15 1922
Hasegawa G, Kanamori K and Nakanishi K 2012 Mater. Lett. 76 1
Hyeon T, Han S, Sung Y-E, Park K-W and Kim Y-W 2003 Angew. Chem. Int. Ed. 42 4352
Jin H, Zhanga H,Ma Y, Xu T, Zhong H and Wang M 2010 J. Power Sources 195 6323
Job N, Sabatier F, Pirard J P, Crine M and Leonard A 2006 Carbon 44 2534
Kiciński W, Szala M and Nita M 2011 J. Sol–Gel Sci. Technol. 58 102
Kruk M, Kohlhaas K M, Dufour B, Celer E B, Jaroniec M, Matyjaszewski K, Ruoff R S and Kowalewski T 2007 Micropor. Mesopor. Mater. 102 178
Lee T K, Ji X, Rault M and Nazar L F 2009 Angew. Chem. Int. Ed. 48 5661
Liang C, Xie H, Schwartz V, Howe J, Dai S and Overbury S H 2009 J. Am. Chem. Soc. 131 7735
Long J W, Laskoski M, Keller T M, Pettigrew K A, Zimmerman T N, Qadri S B and Peterson G W 2010 Carbon 48 501
Liu S, Zhang H, Xu Z, Zhong H and Jin H 2012a Int. J. Hydrogen Energy 37 19065
Liu Z, Li J, Yang Y, Mi J H and Tan X L 2012b Mater. Res. Innovations 16(5) 362
Lu A-H, Li W-C, Salabas E-L, Spliethoff B and Schüth F 2006 Chem. Mater. 18 2086
Lu X, Xiao Y, Lei Z, Chen J, Zhang H, Ni Y and Zhang Q 2009 J. Mater. Chem. 19 4707
Lu X, Shen J, Ma H, Yan B, Li Z, Shi M and Ye M 2012 J. Power Sources 201 340
Moreno-Castilla C, Maldonado-Hódar F J and Pérez-Cadenas A F 2003 Langmuir 19 5650
Oya A and Marsh H 1982 J. Mater. Sci. 17 309
Qi J, Jiang L, Tang Q, Zhu S,Wang S, Yi B and Sun G 2012 Carbon 50 2824
Rolison D R 2003 Science 299 1698
Rouquerol F, Rouquerol J and Sing K 1999 Adsorption by powders and porous solids. Principles, methodology and applications (San Diego, CA: Academic Press)
Sevilla M and Fuertes A B 2009 Mater. Chem. Phys. 113 208
Sevilla M, Sanchís C, Valdés-Solís T, Morallón E and Fuertes A B 2007 J. Phys. Chem. C 111 9749
Sevilla M, Salinas Martínez-de Lecea C, Valdés-Solís T, Morallón E and Fuertes A B 2008a Phys. Chem. Chem. Phys. 10 1433
Sevilla M, Sanchís C, Valdés-Solís T, Morallón E and Fuertes A B 2008b Carbon 46 931
Shanahan P V, Xu L, Liang C, Waje M, Dai S and Yan Y S 2008 J. Power Sources 185 423
Sheng Z M and Wang J N 2008 Adv. Mater. 20 1071
Su F, Zeng J, Bao X, Yu Y, Lee J Y and Zhao X S 2005a Chem. Mater. 17 3960
Su F, Zhao X S, Wang Y, Zeng J, Zhou Z and Yang Lee J 2005b J. Phys. Chem. B 109 20200
Teng S J,Wang X X, Xia B Y and Wang J N 2010 J. Power Sources 195 1065
Wang J N, Zhao Y Z and Niu J J 2007 J. Mater. Chem. 17 2251
Wang D-W, Li F, Liu M, Lu G Q and Cheng H-M 2008 Angew. Chem. 120 379
Wang Z, Zhang X, Liu X, Lv M, Yang K and Meng J 2011 Carbon 49 161
Xia B Y, Wang J N, Wang X X, Niu J J, Sheng Z M, Hu M R and Yu Q C 2008 Adv. Funct. Mater. 18 1790
Yoon S B, Chai G S, Kang S K, Yu J-S, Gierszal K P and Jaroniec M 2005 J. Am. Chem. Soc. 127 4188
Yuan J, Giordano C and Antonietti M 2010 Chem. Mater. 22 5003
Zhai D, Du H, Li B, Zhu Y and Kang F 2011 Carbon 49 725
Acknowledgements
This work was supported by the Ministry of Science and Education through the Department of Chemistry, Warsaw University under Grant IP2011006071.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Supplementary material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci).
Rights and permissions
About this article
Cite this article
KICIŃSKI, W., BYSTRZEJEWSKI, M., RÜMMELI, M.H. et al. Porous graphitic materials obtained from carbonization of organic xerogels doped with transition metal salts. Bull Mater Sci 37, 141–150 (2014). https://doi.org/10.1007/s12034-014-0612-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12034-014-0612-2
Keywords
- Organic xerogel
- carbon xerogel
- graphitization
- mesoporosity
- sol–gel synthesis.