Abstract
Although titanium (Ti) is known to elicit a foreign body response when implanted into humans, Ti implant healing resembles normal wound healing in terms of inflammatory cell recruitment and inflammation persistence. Rough implant surfaces may present better conditions for protein adsorption and for the adhesion of platelets and inflammatory cells such as neutrophils. Implanted biomedical devices initially interact with coagulating blood; however, direct contact between the oxide layer of the implant and neutrophils has not been completely described. The aim of the present study is to compare the behaviours of neutrophils in direct contact with different Ti surfaces. Isolated human neutrophils were placed into contact with Ti discs, which had been rendered as ‘smooth’ or ‘rough’, following different surface treatments. Scanning electron microscopy and flow cytometry were used to measure cell adhesion to the surfaces and exposure of membrane proteins such as CD62L and CD11b. Topographic roughness was demonstrated as higher for SLA treated surfaces, measured by atomic force microscopy and elemental analysis was performed by energy dispersive X-ray, showing a similar composition for both surfaces. The adhesion of neutrophils to the ‘rough’ Ti surface was initially stronger than adhesion to the ‘smooth’ surface. The cell morphology and adhesion marker results revealed clear signs of neutrophil activation by either surface, with different neutrophil morphological characteristics being observed between the two surface types. Understanding the cellular mechanisms regulating cell–implant interactions should help researchers to improve the surface topography of biomedical implant devices.
This is a preview of subscription content, access via your institution.









References
Albrektsson T B P, Hansson H A, Kasemo B, Larsson K, Lundstrom I et al 1983 Ann. Biomed. Eng. 11 1
Albrektsson T, Branemark P I, Hansson H A, Lindstrom J 1981 Acta Orthop. Scand. 52 155
Barbotin R G C C, Brown G 1976 Biomat. Med. Dev. Art. Org. 2 205
Borregaard N, Kjeldsen L, Sengelov H, Diamond M S, Springer TA, Anderson H C, Kishimoto T K, Bainton D F 1994 J. Leukoc. Biol. 56 80
Bothe Rt B L, Davenport Ha 1940 Surg. Gynecol. Obstet. 71 598
Castro M S, Cilli E M, Fontes W 2006a Curr. Protein Pept. Sci. 7 473
Castro M S, De Sa N M, Gadelha R P, De Sousa M V, Ricart C A, Fontes B and Fontes W 2006b Protein Pept. Lett. 13 481
Chehroudi B, Gould T R and Brunette D M 1992 J. Biomed. Mater. Res. 26 493
Craddock P R, Fehr J, Dalmasso A P, Brighan K L and Jacob H S 1977 J. Clin. Invest. 59 879
Ekdahl K, Nilsson B, Golander Cg, Elwing H, Lassen B and Nilsson Ur 1993 J. Colloid Interface Sci. 158 121
Eriksson C and Nygren H 2001 J. Lab. Clin. Med. 137 56
Erlandsen S L, Ottenwaelter C, Frethem C and Chen Y 2001 Biotechniques 31 300
Fontes B, Fontes W, Utiyama E M and Birolini D 1988 Dis. Colon. Rectum. 31 298
Hong J, Nilsson Ekdahl K, Reynolds H, Larsson R and Nilsson B 1999 Biomaterials 20 603
Ivetic A and Ridley A J 2004 Biochem. Soc. Trans. 32 1118
Kim H, Murakami H, Chehroudi B, Textor M and Brunette D M 2006 Int. J. Oral Maxillofac. Implants 21 354
Kishimoto T K, JutilaMA, Berg E L and Butcher E C 1989 Science 245 1238
Kumazawa R,Watari F, Takashi N, Tanimura Y, Uo M and Totsuka Y 2002 Biomaterials 23 3757
Lauffenburger D A and Horwitz A F 1996 Cell 84 359
Leventhal G S 1951 J. Bone Joint Surg. Am. 33-A 473
Maciel N M, Schwartz C A, Rodrigues Pires Junior O, Sebben A, Castro M S, Sousa M V, Fontes W and Ferroni Schwartz E N 2003 Comp. Biochem. Physiol. B Biochem. Mol. Biol. 134 641
Mcnally A K and Anderson J M 1994 Proc. Natl. Acad. Sci. USA 91 10119
Morris CF, Castro MS, Fontes W 2008 Protein Pept. Lett. 15 995
Mukherjee G, Rasmusson B, Linner J G, Quinn M T, Parkos C A, Magnusson K E and Jesaitis A J 1998 Arch. Biochem. Biophys. 357 164
Nusbacher J, Rosenfeld S I, Macpherson J L, Thiem P A and Leddy J P 1978 Blood 51 359
Nygren H, Eriksson C and Lausmaa J 1997 J. Lab. Clin. Med. 129 35
Ponce-Fatou J A 2006 J. Chem. Educ. 83 1147
Rainer T H 2002 Resuscitation 52 127
Ridley A J, Schwartz M A, Burridge K, Firtel R A, Ginsberg MH, Borisy G, Parsons J T and Horwitz A R 2003 Science 302 1704
Rosengren A, Johansson B R, Thomsen P and Ericson L E 1994 Biomaterials 15 17
Salzman EW, Lindon J, Mcmanama G andWare J A 1987 Ann. NY Acad. Sci. 516 184
Sevastianov V I 1988 Crit. Rev. Biocompat. 4 109
Sperandio M, Smith M L, Forlow S B, Olson T S, Xia L, Mcever RP and Ley K 2003 J. Exp. Med. 197 1355
St Hill C A, Alexander S R and Walcheck B 2003 J. Leukoc. Biol. 73 464
Tang L and Eaton J W 1993 J. Exp. Med. 178 2147
Tedder T F, Steeber D A, Chen A and Engel P 1995 FASEB J. 9 866
Thomas K A and Cook S D 1985 J. Biomed. Mater. Res. 19 875
Thomsen P, Larsson C, Ericson L E, Sennerby L, Lausmaa J and Kasemo B 1997 J. Mater. Sci. Mater. Med. 8 653
Todd R F 3rd 1996 J. Clin. Invest. 98 1
Valois C R, Silva L P and Azevedo R B 2008 J. Endod. 34 859
Vedder N B and Harlan J M 1988 J. Clin. Invest. 81 676
Vroman L 1988 Bull. NY Acad. Med. 64 352
Wagner J G and Roth R A 2000 Pharmacol. Rev. 52 349
Xiao T, Takagi J, Coller B S, Wang J H and Springer T A 2004 Nature 432 59
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
CAMPOS, V., MELO, R.C.N., SILVA, L.P. et al. Characterization of neutrophil adhesion to different titanium surfaces. Bull Mater Sci 37, 157–166 (2014). https://doi.org/10.1007/s12034-014-0611-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12034-014-0611-3
Keywords
- Titanium surfaces
- neutrophil morphology
- adhesion molecules
- inflammatory response
- flow cytometry
- scanning electron microscopy.