Bulletin of Materials Science

, Volume 36, Issue 4, pp 505–511 | Cite as

Preparation and gas-sensing property of parallel-aligned ZnO nanofibrous films

  • ZIKUI BAIEmail author
  • JIE XU


Parallel-aligned zinc oxide (ZnO) nanofibrous films fabricated by using electrospinning technique were used in gas sensors for the detection of ethanol and formaldehyde. The morphologies and crystal structures of the films were characterized by field-emission scanning electron microscopy (FE–SEM) and X-ray diffraction (XRD), respectively. FE–SEM results showed that ZnO nanofibres had an approximate diameter of 100–300 nm and consisted of hexagonal wurtzite structure ZnO nanocrystals with a primary particle diameter of 20–50 nm. The results of resistance–temperature characteristics and responses to ethanol and formaldehyde indicated that the parallel-aligned ZnO nanofibrous film had a low activation energy (0· 246 eV), a low optimum operating temperature and a high response. The response and recovery had a high rate in the initial stage and a low rate in the later stage. The parallel-aligned ZnO nanofibrous film had excellent potential application for formaldehyde sensor.


ZnO parallel-aligned nanofibrous film electrospinning sensing characteristics 



This work was supported by 973 project of China (No. 2012CB722701), the Natural Science Foundation of Hubei province (No. 2012FFB04603) and the Natural Science Foundation of Wuhan Textile University. The authors are also grateful to Analytical and Testing Centre of Huazhong University of Science and Technology.


  1. Ahmad A, Walsh J and Wheat T A 2003 Sens. Actuators B93 538Google Scholar
  2. Bai Z K, Xie C S, Hu M L and Zhang S P 2008 Physica E41 235qCrossRefGoogle Scholar
  3. Baxter J B and Aydil E S 2006 Sol. Energy Mater. Sol. Cells 90 607CrossRefGoogle Scholar
  4. Chakrabarti S and Dutta B K 2004 J. Hazard. Mater. 112 269CrossRefGoogle Scholar
  5. Chang J F, Kuo H H, Leu I C and Hon M H 2002 Sens. Actuators B84 258Google Scholar
  6. Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z and Fan X W 2005 Adv. Mater. 17 586CrossRefGoogle Scholar
  7. Chen J Y, Chen H C, Lin J N and Kuo C S 2008 Mater. Chem. Phys. 107 480CrossRefGoogle Scholar
  8. Chew S Y, Wen Y, Dzenis Y and Leong K W 2006 Curr. Pharm. Des. 12 4751CrossRefGoogle Scholar
  9. Choi J K, Hwang I S, Kima S J, Parkb J S, Park S S, Jeong U, Yun C K and Lee J H 2010 Sens. Actuators B150 191Google Scholar
  10. Dersch R, Liu T, Schaper A K, Greiner A and Wendorff J H 2003 J. Polym. Sci. Part A: Polym. Chem. 41 545CrossRefGoogle Scholar
  11. Dzenis Y 2004 Science 304 1917CrossRefGoogle Scholar
  12. Gao T and Wang T H 2005 Appl. Phys. A80 1451Google Scholar
  13. Ge C Q, Xie C S and Cai S Z 2007a Mater. Sci. Eng. B137 53CrossRefGoogle Scholar
  14. Ge C Q, Xie C S, Zeng D W and Cai S Z 2007b J. Am. Ceram. Soc. 90 3263CrossRefGoogle Scholar
  15. Gupta T 1990 J. Am. Ceram. Soc. 73 1817CrossRefGoogle Scholar
  16. Heo Y W, Norton D P, Tien L C, Kwon Y, Kang B S, Ren F, Pearton S J and LaRoche J R 2004 Mater. Sci. Eng. Rep. 47 1CrossRefGoogle Scholar
  17. Hongsith N, Wongrat E, Kerdcharoen T and Choopun S 2010 Sens. Actuators B144 67Google Scholar
  18. Huang X J, Meng F L, Pi Z X, Xu W H and Liu J H 2004 Sens. Actuators B99 444Google Scholar
  19. Jiao Z, Chen F and Li M Q 2002 J. Inorg. Mater. 17 316Google Scholar
  20. Kim K, Yu M, Zong X H, Chiu J, Fang D F and Seo Y S 2003 Biomaterials 24 4977CrossRefGoogle Scholar
  21. Kolmakov A and Moskovits M 2004 Annu. Rev. Mater. Res. 34 151CrossRefGoogle Scholar
  22. Korotcenkov G 2008 Mater. Sci. Eng. R 61 1CrossRefGoogle Scholar
  23. Leslie H J, Michael F T, Iain M, Martin H and Alberto S 2009 Adv. Mater. 21 1568CrossRefGoogle Scholar
  24. Li D, Wang Y and Xia Y 2003 Nano Lett. 3 1167CrossRefGoogle Scholar
  25. Li Z Y, Zhang H N, Zheng W, Wang W, Huang H M, Wang C, MacDiarmid A G and Wei Y 2008 J. Am. Chem. Soc. 130 5036CrossRefGoogle Scholar
  26. Ma Q B, Ye Z Z, He H P, Zhu L P, Wang J R and Zhao B H 2007 Mater. Lett. 61 2460CrossRefGoogle Scholar
  27. Matthews J A, Wnek G E, Simpson D G and Bowlin G L 2002 Biomacromolecules 3 232CrossRefGoogle Scholar
  28. Mott N and Davis E 1979 Electronic process in non-crystalline materials (Oxford: Clarendon) 2nd ed.Google Scholar
  29. Park S, Ikegami T, Ebihara K and Shin P K 2006 Appl. Surf. Sci. 253 1522CrossRefGoogle Scholar
  30. Park J A, Moon J, Lee S J, Lim S C and Zyung T 2009 Curr. Appl. Phys. 9 S210CrossRefGoogle Scholar
  31. Pradhan B, Batabyal S K and Pal A J 2007 Sol. Energy Mater. Sol. Cells 91 769CrossRefGoogle Scholar
  32. Ra E J, An K H, Kim K K, Jeong S Y and Lee Y H 2005 Chem. Phys. Lett. 413 188CrossRefGoogle Scholar
  33. Wang Z L 2003 Adv. Mater. 15 432CrossRefGoogle Scholar
  34. Wang H T, Kang B S, Ren F, Tien L C, Sadik P W, Norton D P, Pearton S J and Lin J S 2005 Appl. Phys. Lett. 86 243503CrossRefGoogle Scholar
  35. Wang C H, Chu X F and Wu M M 2006 Sens. Actuators B113 320Google Scholar
  36. Wang W, Li Z Y, Zheng W, Huang H M, Wang C and Sun J H 2010 Sens. Actuators B143 754Google Scholar
  37. Wu G S, Xie T, Yuan X Y, Li Y, Yang L, Xiao Y H and Zhang L D 2005 Solid State Commun. 134 485CrossRefGoogle Scholar
  38. Wu H, Lin D, Zhang R and Pan W 2007 J. Am. Ceram. Soc. 90 632CrossRefGoogle Scholar
  39. Wu W Y, Ting J M and Huang P J 2009 Nanoscale Res. Lett. 4 513CrossRefGoogle Scholar
  40. Yang X, Shao C, Guan H, Li X and Gong J 2004 Inorg. Chem. Commun. 7 176CrossRefGoogle Scholar
  41. Yang M, Xie T, Peng L and Zhao Y 2007 Appl. Phys. A89 427Google Scholar
  42. Zhang Y, Yu K, Ouyang S and Zhu Z 2006 Mater. Lett. 60 522CrossRefGoogle Scholar
  43. Zhou Z P, Lai C L, Zhang L F, Qian Y, Hou H Q and Fong D H 2009 Polymer 50 2999CrossRefGoogle Scholar
  44. Zhu B L, Xie C S, Wang W Y, Huang K J and Hu J H 2004 Mater. Lett. 58 624CrossRefGoogle Scholar
  45. Zhu B L, Xie C S, Wang A H, Zeng D W, Song W L and Zhao X Z 2005 Mater. Lett. 59 1004CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

    • 1
    Email author
    • 1
    • 2
    • 3
    • 2
  • JIE XU
    • 1
    • 1
  1. 1.Key Lab for Green Processing and Functionalization of New Textile Materials, Ministry of EducationWuhan Textile UniversityWuhanP.R. China
  2. 2.State Key Laboratory of Material Processing and Die and Mould TechnologyHuazhong University of Science and TechnologyWuhanP.R. China
  3. 3.Zhuxi County Environmental Protection AgencyShiyanP.R. China

Personalised recommendations