Advertisement

Bulletin of Materials Science

, Volume 36, Issue 4, pp 535–539 | Cite as

Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor

  • SANDEEP ARYA
  • SALEEM KHAN
  • SALEEM KUMAR
  • RAJNIKANT VERMA
  • PARVEEN LEHANAEmail author
Article

Abstract

Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4·5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was controlled by adjusting deposition time. Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4·81, 8·93, 21, 24· 55, 42·5 and 80·1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability.

Keywords

CuTe nanowires electrodeposition characterization nanosensors 

References

  1. An D K and Mai L H 2002 Proc. IEEE Sensors 1 633CrossRefGoogle Scholar
  2. ASTM Data File Nos. 45-1287, 32-0458Google Scholar
  3. Caillaud F, Smith A and Baumard J F 1993 J. Am. Ceram. Soc. 76 998CrossRefGoogle Scholar
  4. Chakarvarti S K and Vetter J 1991 Nucl. Instrum. Meth. Phys. Res. B62 109Google Scholar
  5. Devreese J T and Eindhoven T U 2007 Feynman’s visionary 1959 Christmas Lecture 4 Google Scholar
  6. Golonka L J, Licznerski B W, Nitsch K and Teterycz H 1997 Meas. Sci. Technol. 8 92CrossRefGoogle Scholar
  7. Hussain M, Mazhar M, Hussain T and Khan N A 2010 J. Iran. Chem. Soc. 7 S59CrossRefGoogle Scholar
  8. Inukai T, Matsuoka M and Ono K 1995 Thin Solid Films 257 22CrossRefGoogle Scholar
  9. Jin M and Ying L S 1994 Thin Solid Films 237 16CrossRefGoogle Scholar
  10. Kim S J, Park J Y, Lee S H and Yi S H 2000 J. Phys. D: Appl. Phys. 33 1781CrossRefGoogle Scholar
  11. Lee J and Kotov N A 2007 Nano Today 2 48CrossRefGoogle Scholar
  12. Lee J, Govorov A O and Kotov N A 2005 Angew. Chem. 44 7439CrossRefGoogle Scholar
  13. Mahmood F S, Gould R D, Hassan A K and Salih H M 1995 Thin Solid Films 270 376CrossRefGoogle Scholar
  14. Pan H, Cui R and Zhu J-J 2008 J. Phys. Chem. B112 16895Google Scholar
  15. Peulon S and Lincot D 1996 Adv. Mater. 8 166CrossRefGoogle Scholar
  16. Prieto A L, Sander M S, Martin-Gonzalez M S, Gronsky R, Sands T and Stacy A M 2001 J. Am. Chem. Soc. 123 7160CrossRefGoogle Scholar
  17. She G, Mu L and Shi W 2009 Recent Patents Nanotechnol. 3 182CrossRefGoogle Scholar
  18. Steele J J, Harris K D and Brett M J 2004 Mater. Res. Soc. Symp. Proc. 788 L11.4.1Google Scholar
  19. Suzuoki Y, Ohki A, Mizutani T and Ieda M 1987 J. Phys. D20 511Google Scholar
  20. Turner A P F 2000 Science 290 1315CrossRefGoogle Scholar
  21. Zhang C-T and Johnson L W 2009 Anal. Chem. 81 3051CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  • SANDEEP ARYA
    • 1
  • SALEEM KHAN
    • 1
  • SALEEM KUMAR
    • 2
  • RAJNIKANT VERMA
    • 1
  • PARVEEN LEHANA
    • 1
    Email author
  1. 1.Department of Physics & ElectronicsUniversity of JammuJammuIndia
  2. 2.Department of Electronic ScienceKurukshetra UniversityKurukshetraIndia

Personalised recommendations