Bulletin of Materials Science

, Volume 36, Issue 4, pp 521–533 | Cite as

Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method



Pure and fluorine-modified tin oxide (SnO2) thin films (250–300 nm) were uniformly deposited on corning glass substrate using sol–gel technique to fabricate SnO2-based resistive sensors for ethanol detection. The characteristic properties of the multicoatings have been investigated, including their electrical conductivity and optical transparency in visible IR range. Pure SnO2 films exhibited a visible transmission of 90% compared with F-doped films (80% for low doping and 60% for high doping). F-doped SnO2 films exhibited lower resistivity (0· 12 × 10 − 4 Ω  cm) compared with the pure (14·16 × 10 − 4 Ω  cm) one. X-ray diffraction and scanning electron microscopy techniques were used to analyse the structure and surface morphology of the prepared films. Resistance change was studied at different temperatures (523–623 K) with metallic contacts of silver in air and in presence of different ethanol vapour concentrations. Comparative gas-sensing results revealed that the prepared F-doped SnO2 sensor exhibited the lowest response and recovery times of 10 and 13 s, respectively whereas that of pure SnO2 gas sensor, 32 and 65 s, respectively. The maximum sensitivities of both gas sensors were obtained at 623 K.


F-doped SnO2 sol–gel gas sensor sensitivity 



The authors are thankful to the Department of Science and Technology (DST), New Delhi, for providing financial assistance to carry out this research work. The authors are also thankful to Mr A K Sharma, Satinder Singh, Sumit Thakur and Anubhav of CSIR–CSIO for their assistance in the sensor fabrication.


  1. Acosta D R, Zirconi E P, Montoya E and Estrada W 1996 Thin Solid Films 288 1CrossRefGoogle Scholar
  2. Aukkaravittayapun S, Wongtida N, Kasecwatin T, Charojrochkul S, Unnanon K and Chindaudom P 2006 Thin Solid Films 496 117CrossRefGoogle Scholar
  3. Chang M S, Ryong K H, Graeme A, John D and Lee J-H 2008 Sens. Actuators B131 556Google Scholar
  4. Chatterjee K, Chatterjee S, Banerjee A, Raut M, Pal N C, Sen A and Maiti H S 2003 Mater. Chem. Phys. 81 33CrossRefGoogle Scholar
  5. Chaudhary V A, Mulla I S and Vijayamohanan K 1999 Sens. Actuators B55 154Google Scholar
  6. Chen J, Wang K, Huang R, Saito T, Ikuhara Y H, Hirayama T and Zhou W 2010 IEEE Trans. Nanotechnol. 9 634CrossRefGoogle Scholar
  7. Donato A, Della Corte F, Gioffrè M, Donato N, Bonavita A, Micali G and Neri G 2009 Thin Solid Films 517 6184CrossRefGoogle Scholar
  8. Elangovan E and Ramamurthi K 2003 J. Optoelectronics Adv. Mater. 5 fGoogle Scholar
  9. Elangovan E, Singha M P, Dharmaprakash M S and Ramamurthi K 2004 J. Optoelectronics Adv. Mater. 6 197Google Scholar
  10. Epifani M, Díaz R, Arbiol J, Comini E, Sergent N, Pagnier T, Siciliano P, Faglia G and Morante J R 2006 Adv. Funct. Mater. 16 1488CrossRefGoogle Scholar
  11. Esfandyarpour B, Mohajerzadeh S, Famini S, Khodadadi A and Asl Soleimani E 2004 Sens. Actuators B100 190Google Scholar
  12. Eun H T and Ko Y S 2003 J. Ind. Eng. Chem. 9 348Google Scholar
  13. Franke M E, Koplin T J and Simon U 2006 Small 2 36CrossRefGoogle Scholar
  14. Gordillo G, Moreno L C, de la Cruz W and Teheran P 1994 Thin Solid Films 252 61CrossRefGoogle Scholar
  15. Gu Z, Liang P, Liu X, Zhang W and Le Y 2000 J. Sol–Gel Sci. Technol. 18 159CrossRefGoogle Scholar
  16. Han C H, Han S D, Singh I and Toupance T 2005 Sens. Actuators B 109 264CrossRefGoogle Scholar
  17. Han C H, Han S D and Khatkar S P 2006 Sensors 6 492CrossRefGoogle Scholar
  18. Johnson V A and Horovitz K L 1947 Phys. Rev. 71 374CrossRefGoogle Scholar
  19. Kamins T I 1971 J. Appl. Phys. 42 4357CrossRefGoogle Scholar
  20. Korotcenkov G and Cho B K 2009 Sens. Actuators B 142 321CrossRefGoogle Scholar
  21. Lampert C M 1982 Ind. Eng. Chem. Prod. Res. Dev. 21 612CrossRefGoogle Scholar
  22. Leja E, Korecki J, Krop K and Toll K 1979 Thin Solid Films 59 147CrossRefGoogle Scholar
  23. Li X-L, Lou T-J, Sun X-M and Li Y-D 2004 Inorg. Chem. 43 5442CrossRefGoogle Scholar
  24. Mishra S, Ghanshyam C, Ram N, Singh S, Bajpai R P and Bedi R K 2002 Bull. Mater. Sci. 25 231CrossRefGoogle Scholar
  25. Mohammed M T and Abdul Ghafor W A 1989 Solid State Commun. 72 1043CrossRefGoogle Scholar
  26. Park S-S and Mackenzie J D 1996 Thin Solid Films 274 154CrossRefGoogle Scholar
  27. Sakai G, Baik N S, Miura N and Yamazoe N 2001 Sens. Actuators B77 116Google Scholar
  28. Seto J Y W 1975 J. Appl. Phys. 46 5247CrossRefGoogle Scholar
  29. Shukla S, Agarwal R, Cho H J, Seal S, Ludwig L and Parish C J 2005a J. Appl. Phys. 97 054307CrossRefGoogle Scholar
  30. Shukla S, Ludwig L, Parish C and Seal S 2005b Sens. Actuators B104 223Google Scholar
  31. Steffes H, Imawan C, Solzbacher F and Obermeier E 2000 Sens. Actuators B68 249Google Scholar
  32. Thangaraju B 2002 Thin Solid Films 402 71CrossRefGoogle Scholar
  33. Varghese O K, Malhotra L K and Sharma G L 1999 Sens. Actuators B55 161Google Scholar
  34. Vlachos D S, Skafidas P D and Avaritsiotis J N 1995 Sens. Actuators B25 491Google Scholar
  35. Wada K and Egashira M 2000 Sens. Actuators B62 211Google Scholar
  36. Xu C, Tamaki J, Miura N and Yamazoe N 1991 Sens. Actuators B3 147Google Scholar
  37. Yamazoe N 1991 Sens. Actuators B5 7Google Scholar
  38. Yamazoe N, Fuchigami J, Kishikawa M and Seiyama T 1979 Surf. Sci. 86 335CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

    • 1
    • 2
    • 1
    • 1
  1. 1.CSIR-Central Scientific Instruments OrganisationChandigarhIndia
  2. 2.Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations