Abstract
Polyaniline nanofibre–tin oxide (PAni-SnO2) nanocomposites are synthesized and mixed with polyvinyl alcohol (PVA) as stabilizer to cast free-standing films. Composite films are characterized by X-ray diffraction studies (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence spectroscopy (PL) and UV-visible spectroscopy. XRD confirms the formation of PAni nanofibre–SnO2 nanocomposite. From TEM images, diameter of the polyaniline nanofibre and SnO2 nanoparticles in the PAni-SnO2 nanocomposite are found to be 20–60 nm. SEM results show fibrous morphology of the PAni nanofibre and spherical morphology of polyaniline-SnO2 composites. The nanocomposites exhibit high relative photoluminescence intensity in violet as well as green–yellow region of visible spectrum. From electrical conductivity measurement, it is confirmed that PAni nanofibre–SnO2 nanocomposite follows Mott’s one-dimensional variable range hopping (VRH) model.
Similar content being viewed by others
References
Angelopolos M, Asturias G E, Ermer S P, Scherr E M, MacDiarmid A G, Akhtar M, Kiss Z and Epstein A J 1988 Mol. Cryst. Liq. Cryst. 160 151
Amin N, Isaka T, Yamada A and Konagai M 2001 Sol. Energy Mater. Sol. Cells 67 195
Bonnell D A and Angelopolos M 1989 Synth. Met. 33 301
Chandrasekhar P 1999 Conducting polymers, fundamentals and applications: A practical approach (Boston: Kluwer Academic) p. 760
Dey A, De S, De A and De S K 2004 Nanotechnology 15 1277
Dutta K and De S K 2007 J. Phys. D: Appl. Phys. 40 734
Epstein A J et al 1987 Synth. Met. 18 303
Ganesan R and Gedanken A 2008 Nanotechnology 19 435709
Gangopadhyay R and Desd A 2000 Chem. Mater. 12 608
Gaponik N P, Talapin D V, Rogach A L and Eychmuller A 2000 J. Mater. Chem. 10 2163
Gaponik N P, Talapin D V and Rogach A L 1999 Phys. Chem. Chem. Phys. 1 1787
Ge J P, Wang J, Zhang H, Wang X, Peng X and Li Q Y D 2006 Sens. Actuators Chem. B113 937
He H Jr, Wu T H, Hsin C L, Li K M, Chen L J, Chueh Y L, Chou L J and Wang Z L 2006 Small 2 116
Huang J 2006 Pure Appl. Chem. 78 15
Lu X, Gao H, Chen J, Chao D, Zhang W and We Y 2005 Nanotechnology 16 113
Luthra V, Singh R, Gupta S K and Mansingh A 2003 Curr. Appl. Phys. 3 219
MacDiarmid A G 2001 Synth. Metals 125 11
Mott N F and Davis E A 1979 Electronic processes in non-crystalline materials (Oxford: Clarendon) p. 157
Nakajima T and Kawagoe T 1989 Synth. Met. 28 C629
Pant H C, Patra M K, Negi S C, Bhatia A, Vadera S R and Kumar N 2006 Bull. Mater. Sci. 29 379
Raghavendra S C, Khasim S, Revanasiddappa M, Prasad M V N A and Kulkarni A B 2003 Bull. Mater. Sci. 26 733
Roth S and Carroll D 2004 One-dimensional metals (Weinheim: Wiley-VCH: Verlag GmbH & Co. KGaA) 2nd ed., p. 141
Sharma M, Kaushik D, Singh R R and Pandey R K 2006 J. Mater. Sci.: Mater. Electron. 17 537
Stafstorm S, Breadas J L, Epstein S J, Woo H S, Tanner D B, Huang W S and MacDiarmid A G 1987 Phys. Rev. Lett. 59 1464
Su S J and Kuramato N 2000 Synth. Metals 114 147
Wang Z L and Kang Z C 1998 Functional and smart materials (New York: Plenum) p. 111
Watanabe A, Mori K, Mikuni M, Nakamura Y and Matsuda M 1989 Macromolecules 22 3323
Wise D L, Wnek G E, Trantlolo D, Cooper T M and Gresser J D 1998 Photonic polymer systems—Fundamentals, methods and applications (New York: Marcel Dekker, Inc.)
Xia Y, Wiesinger J M, MacDiarmid A G and Epstein A J 1995 Chem. Mater. 7 443
Zheng Z X, Xi Y Y, Dong P, Huang H G, Zhou J Z, Wu L L and Lin Z H 2002 Phys. Chem. Commun. 5 6
Acknowledgements
Financial support of UGC through project No F.31-7/2005(SR) is greatly acknowledged. Authors are thankful to SAIF, NEHU, Shillong, for transmission electron microscopic analysis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
SARMAH, S., KUMAR, A. Electrical and optical studies in polyaniline nanofibre–SnO2 nanocomposites. Bull Mater Sci 36, 31–36 (2013). https://doi.org/10.1007/s12034-013-0431-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12034-013-0431-x