Percolation based enhancement in effective thermal conductivity of HDPE/LBSMO composites

Abstract

Thermal conductivity of composites with electrically conducting La0·7Ba0·15Sr0·15MnO3 (LBSMO) filler of nanometric grain size in HDPE matrix is investigated. Volume fraction of LBSMO fillers was varied between 0 and 0·30. SEM photographs of the composites show the presence of clusters and percolative paths, particularly for composites prepared with higher filler volume fractions. The effective thermal conductivity of the composites displays significant enhancement with increasing filler content in HDPE. A maximum enhancement of ~65% compared to that for pure HDPE has been observed for composite with 0·30 volume fraction of LBSMO filler. Most of the models those are generally used to predict the properties of two phase mixtures, has been found either to under/overestimate the measured effective thermal conductivity of the composites. We confirm that the observed rapid increase in the effective thermal conductivity of HDPE/LBSMO composite over the studied range of filler volume fraction (viz. 0–0·30), is predicted very well, considering the effect of percolation as proposed by Zhang et al (2009).

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Agari Y and Uno T 1986 J. Appl. Polym. Sci. 32 5705

    Article  CAS  Google Scholar 

  2. Battabyal M and Dey T K 2006 Physica B373 46

    Google Scholar 

  3. Bigg D M 1995 Adv. Polym. Sci. 119 1

    Article  CAS  Google Scholar 

  4. Blumenfeld R, Meir Y, Harris A B and Aharony A 1986 J. Phys. A19 L791

    Google Scholar 

  5. Bohac V, Gustavsson M K, Kubikar L and Gustafsson S E 2000 Rev. Sci. Instrum. 71 2452

    Article  CAS  Google Scholar 

  6. Bruggeman D A G 1935 Am. Phys. 24 636

    CAS  Google Scholar 

  7. Carson J K, Lovatt S L, Tanner D J and Cleland A C 2005 Int. J. Heat and Mass Transf. 48 2150

    Article  Google Scholar 

  8. Chandrasekhar K D, Venimadhav A and Das A K 2009 Appl. Phys. Letts 95 062904

    Article  Google Scholar 

  9. Cheng S C and Vachon R L 1990 Int. J. Heat Mass Trans. 11 537

    Google Scholar 

  10. Cohn J L 2000 J. Supercond.: Incorp. Novel Magn. 13 291

    Article  CAS  Google Scholar 

  11. Dang Z M, Wang L, Yin Y, Zhang Q and Lei Q Q 2007 Adv. Mater. (Germany: Weinheim) 19 852

    Article  CAS  Google Scholar 

  12. Das S and Dey T K 2006 J. Phys. Condens. Matter 18 7629

    Article  CAS  Google Scholar 

  13. Deepa K S, Sebastian M T and James J 2007 Appl. Phys. Letts 91 202904

    Article  Google Scholar 

  14. Dong X J, Hu Y F, Wu Y Y, Zhao J and Wan Z Z 2010 Chin. Phys. Lett. 27 044401

    Article  Google Scholar 

  15. Feng Y, Yu B, Zou M and Zhang D 2004 J. Phys. D: Appl. Phys. 37 3030

    Article  CAS  Google Scholar 

  16. Fujishiro H and Ikebe M 1999 Physica B263–264 691

    Article  Google Scholar 

  17. Goyal R K, Tiwari A N, Mulik U P and Negi Y S 2007 Compos. Sci. Technol. 67 1802

    Article  CAS  Google Scholar 

  18. Gustavsson M, Karawacki E and Gustafsson S E 1994 Rev. Sci. Instrum. 65 3856

    Article  CAS  Google Scholar 

  19. Hakansson B and Ross R G 1990 J. Appl. Phys. 68 3285

    Article  Google Scholar 

  20. Hamilton R L and Crosser O K 1962 Ind. Eng. Chem. Fund. 1 187

    Article  CAS  Google Scholar 

  21. He H, Renli F, Han Y, Shen Y and Song X 2007 J. Mater. Sci. 42 6749

    Article  CAS  Google Scholar 

  22. He F, Lau S, Chan H L and Fan J 2009 Adv. Mater. (Germany: Weinheim) 21 710

    Article  CAS  Google Scholar 

  23. Hejtmanek J, Jirak Z and Marysko M 1999 Phys. Rev. B60 14057

    Google Scholar 

  24. Hui P M, Zhang X, Markworth A and Stroud D 1999 J. Mater. Sci. 34 5497

    Article  CAS  Google Scholar 

  25. Keblinski P, Phillpot S R, Choi S U S and Eastman J A 2002 Int. J. Heat Mass Trans. 45 855

    Article  CAS  Google Scholar 

  26. Kumlutas D, Tavman I H and Coban M T 2003 Compos. Sci. Technol. 63 113

    Article  CAS  Google Scholar 

  27. Kusy R P and Corneliussen R D 1975 Polym. Eng. Sci. 15 107

    Article  CAS  Google Scholar 

  28. Kutcherov V, Hakansson B, Ross G and Backstrom G 1991 J. Appl. Phys. 71 1732

    Article  Google Scholar 

  29. Lewis T and Nielsen L 1970 J. Appl. Polym. Sci. 14 1449

    Article  CAS  Google Scholar 

  30. Liang L H, Wei Y G and Li B 2008 J. Phys.: Condens. Matter 20 365201

    Article  Google Scholar 

  31. Li Y, Xu M, Feng J Q and Dang Z M 2006 Appl. Phys. Letts 89 072902

    Article  Google Scholar 

  32. Li Y, Zhou J, Tung S, Schneider E and Xi S 2009 Powder Technol. 196 89

    Article  CAS  Google Scholar 

  33. Ma Y, Yu B, Zhang D and Zou M 2004 J. Appl. Phys. 95 6426

    Article  CAS  Google Scholar 

  34. Mamunya Y P, Davydenko V V and Lebedev E V 1995 Polym. Compos. 16 319

    Article  CAS  Google Scholar 

  35. Mamunya Y P, Davydenko V V, Pissis P and Lebedev E V 2002 Euro. Polym. J. 38 1887

    Article  CAS  Google Scholar 

  36. Mandelbrot B B and Given J A 1984 Phys. Rev. Lett. 52 1853

    Article  Google Scholar 

  37. Maxwell J C 1954 A treatise on elect. and magn. (NY: Dover Pub, Inc.) 3rd ed.

    Google Scholar 

  38. Meredith R E and Tobias C W 1962 Adv. in Electrochem and Electrochemical Engg. (New York: Wiley Interscience) 2 15

    CAS  Google Scholar 

  39. Monajjemi M, Baheri H and Mollaamin F 2011 J. Struct. Chem. 52 54

    Article  CAS  Google Scholar 

  40. Murshed S M S, Leong K C and Yang C 2008 Appl. Therm. Engg. 28 2109

    Article  CAS  Google Scholar 

  41. Ott H J 1981 Plastic and Rubber Processing and Application 1 9

    CAS  Google Scholar 

  42. Pabst W and Gregorova E 2006 Ceram. Int. 32 89

    Article  CAS  Google Scholar 

  43. Progelhof R C, Throne J H and Ruetsch R R 1976 Polym. Eng. Sci. 16 615

    Article  CAS  Google Scholar 

  44. Putten D, Moonen J T, Brom H B, Brokken-Zijp J C M and Michels M A J 1992 Phys. Rev. Letts 69 494

    Article  Google Scholar 

  45. Russell H W 1935 J. Am. Ceram. Soc. 18 1

    Article  CAS  Google Scholar 

  46. Sass J H, Lachenbroch H H and Munroe R 1971 Z. Geophys. Res. 76 3391

    Article  Google Scholar 

  47. Sundstrom D W and Lee Y-D 1972 J. Appl. Polym. Sci. 16 3159

    Article  CAS  Google Scholar 

  48. Tian W and Yang R 2008 CMES 24 123

    Google Scholar 

  49. Wang L and Dang Z M 2005 Appl. Phys. Letts 87 042903

    Article  Google Scholar 

  50. Wang X Q and Mujumdar A S 2007 Int. J. Therm. Sci. 46 1

    Article  Google Scholar 

  51. Wong P and Bollampally R S 1999 J. Appl. Polym. Sci. 74 3396

    Article  CAS  Google Scholar 

  52. Wu C, Cho T J, Xu J, Lee D, Yang B and Zachariah M R 2010 Phys. Rev. E81 011406

    Google Scholar 

  53. Xu Y, Chung D D I and Mroz C 2001 Composites Part A 32 1749

    Article  Google Scholar 

  54. Yao S H, Dang Z M, Jiang M J, Xu H P and Bai J 2007 Appl. Phys. Letts 91 212901

    Article  Google Scholar 

  55. Zhang G, Xia Y, Wang H, Tao Y, Tao G, Tu S and Wu H 2009 J. Compos. Mater. (DOI: 10.1177/0021998309349690)

    Google Scholar 

  56. Zhang M Q, Xu J R, Zeng H M, Huo Q, Zhang Z Y and Yun F C 1995 J. Mater. Sci. 30 4226

    Article  CAS  Google Scholar 

Download references

Acknowledgement

One of the authors (TKD) acknowledges CSIR, New Delhi, for financial support in the form of a research project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T K DEY.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

KOLE, M., TRIPATHI, D. & DEY, T.K. Percolation based enhancement in effective thermal conductivity of HDPE/LBSMO composites. Bull Mater Sci 35, 601–609 (2012). https://doi.org/10.1007/s12034-012-0329-z

Download citation

Keywords

  • Thermal conductivity
  • HDPE/La0·7Ba0·15Sr0·15MnO3 composites
  • transient plane source (TPS)
  • percolation model