Abstract
Thermal conductivity of composites with electrically conducting La0·7Ba0·15Sr0·15MnO3 (LBSMO) filler of nanometric grain size in HDPE matrix is investigated. Volume fraction of LBSMO fillers was varied between 0 and 0·30. SEM photographs of the composites show the presence of clusters and percolative paths, particularly for composites prepared with higher filler volume fractions. The effective thermal conductivity of the composites displays significant enhancement with increasing filler content in HDPE. A maximum enhancement of ~65% compared to that for pure HDPE has been observed for composite with 0·30 volume fraction of LBSMO filler. Most of the models those are generally used to predict the properties of two phase mixtures, has been found either to under/overestimate the measured effective thermal conductivity of the composites. We confirm that the observed rapid increase in the effective thermal conductivity of HDPE/LBSMO composite over the studied range of filler volume fraction (viz. 0–0·30), is predicted very well, considering the effect of percolation as proposed by Zhang et al (2009).
This is a preview of subscription content, access via your institution.





References
Agari Y and Uno T 1986 J. Appl. Polym. Sci. 32 5705
Battabyal M and Dey T K 2006 Physica B373 46
Bigg D M 1995 Adv. Polym. Sci. 119 1
Blumenfeld R, Meir Y, Harris A B and Aharony A 1986 J. Phys. A19 L791
Bohac V, Gustavsson M K, Kubikar L and Gustafsson S E 2000 Rev. Sci. Instrum. 71 2452
Bruggeman D A G 1935 Am. Phys. 24 636
Carson J K, Lovatt S L, Tanner D J and Cleland A C 2005 Int. J. Heat and Mass Transf. 48 2150
Chandrasekhar K D, Venimadhav A and Das A K 2009 Appl. Phys. Letts 95 062904
Cheng S C and Vachon R L 1990 Int. J. Heat Mass Trans. 11 537
Cohn J L 2000 J. Supercond.: Incorp. Novel Magn. 13 291
Dang Z M, Wang L, Yin Y, Zhang Q and Lei Q Q 2007 Adv. Mater. (Germany: Weinheim) 19 852
Das S and Dey T K 2006 J. Phys. Condens. Matter 18 7629
Deepa K S, Sebastian M T and James J 2007 Appl. Phys. Letts 91 202904
Dong X J, Hu Y F, Wu Y Y, Zhao J and Wan Z Z 2010 Chin. Phys. Lett. 27 044401
Feng Y, Yu B, Zou M and Zhang D 2004 J. Phys. D: Appl. Phys. 37 3030
Fujishiro H and Ikebe M 1999 Physica B263–264 691
Goyal R K, Tiwari A N, Mulik U P and Negi Y S 2007 Compos. Sci. Technol. 67 1802
Gustavsson M, Karawacki E and Gustafsson S E 1994 Rev. Sci. Instrum. 65 3856
Hakansson B and Ross R G 1990 J. Appl. Phys. 68 3285
Hamilton R L and Crosser O K 1962 Ind. Eng. Chem. Fund. 1 187
He H, Renli F, Han Y, Shen Y and Song X 2007 J. Mater. Sci. 42 6749
He F, Lau S, Chan H L and Fan J 2009 Adv. Mater. (Germany: Weinheim) 21 710
Hejtmanek J, Jirak Z and Marysko M 1999 Phys. Rev. B60 14057
Hui P M, Zhang X, Markworth A and Stroud D 1999 J. Mater. Sci. 34 5497
Keblinski P, Phillpot S R, Choi S U S and Eastman J A 2002 Int. J. Heat Mass Trans. 45 855
Kumlutas D, Tavman I H and Coban M T 2003 Compos. Sci. Technol. 63 113
Kusy R P and Corneliussen R D 1975 Polym. Eng. Sci. 15 107
Kutcherov V, Hakansson B, Ross G and Backstrom G 1991 J. Appl. Phys. 71 1732
Lewis T and Nielsen L 1970 J. Appl. Polym. Sci. 14 1449
Liang L H, Wei Y G and Li B 2008 J. Phys.: Condens. Matter 20 365201
Li Y, Xu M, Feng J Q and Dang Z M 2006 Appl. Phys. Letts 89 072902
Li Y, Zhou J, Tung S, Schneider E and Xi S 2009 Powder Technol. 196 89
Ma Y, Yu B, Zhang D and Zou M 2004 J. Appl. Phys. 95 6426
Mamunya Y P, Davydenko V V and Lebedev E V 1995 Polym. Compos. 16 319
Mamunya Y P, Davydenko V V, Pissis P and Lebedev E V 2002 Euro. Polym. J. 38 1887
Mandelbrot B B and Given J A 1984 Phys. Rev. Lett. 52 1853
Maxwell J C 1954 A treatise on elect. and magn. (NY: Dover Pub, Inc.) 3rd ed.
Meredith R E and Tobias C W 1962 Adv. in Electrochem and Electrochemical Engg. (New York: Wiley Interscience) 2 15
Monajjemi M, Baheri H and Mollaamin F 2011 J. Struct. Chem. 52 54
Murshed S M S, Leong K C and Yang C 2008 Appl. Therm. Engg. 28 2109
Ott H J 1981 Plastic and Rubber Processing and Application 1 9
Pabst W and Gregorova E 2006 Ceram. Int. 32 89
Progelhof R C, Throne J H and Ruetsch R R 1976 Polym. Eng. Sci. 16 615
Putten D, Moonen J T, Brom H B, Brokken-Zijp J C M and Michels M A J 1992 Phys. Rev. Letts 69 494
Russell H W 1935 J. Am. Ceram. Soc. 18 1
Sass J H, Lachenbroch H H and Munroe R 1971 Z. Geophys. Res. 76 3391
Sundstrom D W and Lee Y-D 1972 J. Appl. Polym. Sci. 16 3159
Tian W and Yang R 2008 CMES 24 123
Wang L and Dang Z M 2005 Appl. Phys. Letts 87 042903
Wang X Q and Mujumdar A S 2007 Int. J. Therm. Sci. 46 1
Wong P and Bollampally R S 1999 J. Appl. Polym. Sci. 74 3396
Wu C, Cho T J, Xu J, Lee D, Yang B and Zachariah M R 2010 Phys. Rev. E81 011406
Xu Y, Chung D D I and Mroz C 2001 Composites Part A 32 1749
Yao S H, Dang Z M, Jiang M J, Xu H P and Bai J 2007 Appl. Phys. Letts 91 212901
Zhang G, Xia Y, Wang H, Tao Y, Tao G, Tu S and Wu H 2009 J. Compos. Mater. (DOI: 10.1177/0021998309349690)
Zhang M Q, Xu J R, Zeng H M, Huo Q, Zhang Z Y and Yun F C 1995 J. Mater. Sci. 30 4226
Acknowledgement
One of the authors (TKD) acknowledges CSIR, New Delhi, for financial support in the form of a research project.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
KOLE, M., TRIPATHI, D. & DEY, T.K. Percolation based enhancement in effective thermal conductivity of HDPE/LBSMO composites. Bull Mater Sci 35, 601–609 (2012). https://doi.org/10.1007/s12034-012-0329-z
Received:
Revised:
Published:
Issue Date:
Keywords
- Thermal conductivity
- HDPE/La0·7Ba0·15Sr0·15MnO3 composites
- transient plane source (TPS)
- percolation model