Skip to main content

Tissue-engineered triphasic ceramic coated hydroxyapatite induced bone formation and vascularization at an extraskeletal site in a rat model

Abstract

Tissue-engineered bone regeneration has attracted much attention because of its high clinical demand for restoration of injured tissues. In the present study, we have evaluated the capability of bare (without cells) and tissue-engineered (with osteogenic-induced rat Mesenchymal Stem Cells (MSCs)) bioactive ceramics such as hydroxyapatite (HA) and triphasic ceramic-coated hydroxyapatite (HASi) to mediate vascularisation and osteoinduction at an extraskeletal site of rat model. The viability, proliferation and osteogenic differentiation of MSCs on the scaffolds were assessed in vitro and thereby established the capability of HASi in providing a better structural habitat than HA. The vascular invasion was relatively low in bare and tissue-engineered HA at 2 and 4 weeks. Interestingly, the implantation site was well vascularised with profuse ingrowth of blood capillaries in HASi groups, with preference for tissue-engineered HASi groups. Similarly, neo-osteogenesis studies were shown only by tissue-engineered HASi groups. The ingrowth of numerous osteoblast-like cells was seen around and within the pores of the material in bare HASi and tissue-engineered HASi groups (very low cellular infiltration in bare HA groups), but there was no osteoid deposition. The positive impact in forming bone in tissue-engineered HASi groups is attributable to the scaffold and to the cells, with the first choice for scaffold because both HA and HASi were engineered simultaneously with the cells from same source and same passage. Thus, highly porous interconnected porous structure and appropriate chemistry provided by HASi in combination with osteogenic-induced MSCs facilitated better vascularisation that lead to neo-osteogenesis.

This is a preview of subscription content, access via your institution.

References

  1. Abiraman S, Varma H K, Umashankar P R and John A 2002 Biomaterials 23 3023

    Article  CAS  Google Scholar 

  2. Burwell R G 1964 J. Bone Joint Surg. B46 110

    CAS  Google Scholar 

  3. Caplan A I 1991 J. Orthop. Res. 9 641

    Article  CAS  Google Scholar 

  4. Carlisle E M 1970 Science 167 279

    Article  CAS  Google Scholar 

  5. Goshima J, Goldberg V M and Caplan A I 1991 Biomaterials 12 253

    Article  CAS  Google Scholar 

  6. Hartman E H, Vehof J W, de Ruijter J E, Spauwen P H and Jansen J A 2004 Biomaterials 25 5831

    Article  CAS  Google Scholar 

  7. Hench L L and Wilson J 1993 An introduction to bioceramics: advanced series in ceramics (USA: World Scientific) Vol 1, pp. 1–24

    Google Scholar 

  8. John A, Nair M B, Bernhardt A, Varma H K and Gelinsky M 2008 Int. J. Appl. Ceram. Technol. 5 11

    Article  CAS  Google Scholar 

  9. Karageorgiou V and Kaplan D 2005 Biomaterials 26 5474

    Article  CAS  Google Scholar 

  10. Kaufmann E A, Ducheyne P and Shapiro I M 2000 J. Biomed. Mater. Res. 52 783

    Article  CAS  Google Scholar 

  11. Kruyt M C, de Bruijn J D, Wilson C E, Oner F C, van Blitterswijk C A, Verbout A J and Dhert W J 2003 Tissue Eng. 9 327

    Article  CAS  Google Scholar 

  12. Kruyt M C, Dhert W J and Oner FC 2004 Transplantation 77 504

    Article  Google Scholar 

  13. Kruyt M C, Dhert W J A, Oner C, van Blitterswijk C A, Verbout A J and de Bruijn J D 2004 J. Biomed. Mater. Res. Part B: Appl. Biomater. B69 113

    Article  Google Scholar 

  14. Leach J K, Kaigler D, Wang Z, Krebsbach P H and Mooney D J 2006 Biomaterials 27 3249

    Article  CAS  Google Scholar 

  15. Lobel K D and Hench L L 1998 J. Biomed. Mater. Res. 39 575

    Article  CAS  Google Scholar 

  16. Maniatopoulos C, Rodriguez A, Deporter D A and Melcher A H 1986 Int. J. Oral Maxillofac. Implants 1 31

    CAS  Google Scholar 

  17. Messing R A 1969 J. Am. Chem. Soc. 91 2370

    Article  CAS  Google Scholar 

  18. Nair M B, Suresh B S, Varma H K and John A 2008a Acta Biomater. 4 173

    Article  CAS  Google Scholar 

  19. Nair M B, Bernhardt A, Lode A, Heinemann C, Thieme S, Hanke T, Varma H K, Gelinsky M and John A 2008b J. Biomed. Mater. Res. (Epub ahead of print)

  20. Nair M B, Varma H K and John A 2008 J. Mater. Sci. Mater. Med. 14 Oct (Epub ahead of print)

  21. Pietak A M, Reid J W, Stott M J and Sayer M 2007 Biomaterials 28 4023

    Article  CAS  Google Scholar 

  22. Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S and Marshak D 1999 Science 284 143

    Article  CAS  Google Scholar 

  23. Porter A E, Best S M and Bonfield W 2004 J. Biomed. Mater. Res. A68 133

    Article  Google Scholar 

  24. Richard M D 2005 Tissue Eng. 11 768

    Article  Google Scholar 

  25. Ripamonti U 2006 Biomaterials 27 807

    Article  CAS  Google Scholar 

  26. Salgado A J, Coutinho O P and Reis R L 2004 Macromol. Biosci. 4 743

    Article  CAS  Google Scholar 

  27. Senger D R, Ledbetter S R, Claffey K P, Papadopoulos-Sergiou A, Peruzzi C A and Detmar M 1996 Am. J. Pathol. 149 293

    CAS  Google Scholar 

  28. Takahashi F, Akutagawa S, Fukumoto H, Tsukiyama S, Ohe Y, Takahashi K, Fukuchi Y, Saijo N and Nishio K 2002 Int. J. Cancer 98 707

    Article  CAS  Google Scholar 

  29. Takahashi Y, Yamamoto M and Tabata Y 2005 Biomaterials 26 3587

    Article  CAS  Google Scholar 

  30. Tsuruga E, Takita H, Itoh H, Wakisaka Y and Kuboki Y 1997 J. Biochem. 121 317

    Article  CAS  Google Scholar 

  31. Valerio P, Guimaraes M H, Pereira M M, Leite M F and Goes A M 2005 J. Mater. Sci. Mater. Med. 16 851

    Article  CAS  Google Scholar 

  32. Valerio P, Pereira M M, Goes A M and Leite M F 2004 Biomaterials 25 2941

    Article  CAS  Google Scholar 

  33. Välimäki V V and Aro H T 2006 Scand. J. Surg. 95 95

    Google Scholar 

  34. van den Dolder J, Vehof J W, Spauwen P H and Jansen J A 2002 J. Biomed. Mater. Res. 62 350

    Article  Google Scholar 

  35. Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam B C, Mutschler W and Schieker M 2008 Tissue Eng. A14 1331

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Annie John.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nair, M.B., Varma, H.K., Mohanan, P.V. et al. Tissue-engineered triphasic ceramic coated hydroxyapatite induced bone formation and vascularization at an extraskeletal site in a rat model. Bull Mater Sci 34, 1721–1731 (2011). https://doi.org/10.1007/s12034-011-0383-y

Download citation

Keywords

  • Bone formation
  • hydroxyapaite
  • rat model
  • vascularization