Skip to main content

Microbial synthesis of iron-based nanomaterials—A review

Abstract

Nanoparticles are the materials having dimensions of the order of 100 nm or less. They exhibit a high surface/volume ratio leading to different properties far different from those of the bulk materials. The development of uniform nanoparticles has been intensively pursued because of their technological and fundamental scientific importance. A number of chemical methods are available and are extensively used, but these are often energy intensive and employ toxic chemicals. An alternative approach for the synthesis of uniform nanoparticles is the biological route that occurs at ambient temperature, pressure and at neutral pH. The main aim of this review is to enlist and compare various methods of synthesis of iron-based nanoparticles with emphasis on the biological method. Biologically induced and controlled mineralization mechanisms are the two modes through which the micro-organisms synthesize iron oxide nanoparticles. In biologically induced mineralization (BIM) mode, the environmental factors like pH, pO2, pCO2, redox potential, temperature etc govern the synthesis of iron oxide nanoparticles. In contrast, biologically controlled mineralization (BCM) process initiates the micro-organism itself to control the synthesis. BIM can be observed in the Fe(III) reducing bacterial species of Shewanella, Geobacter, Thermoanaerobacter, and sulphate reducing bacterial species of Archaeoglobus fulgidus, Desulfuromonas acetoxidans, whereas BCM mode can be observed in the magnetotactic bacteria (MTB) like Magnetospirillum magnetotacticum, M. gryphiswaldense and sulphate-reducing magnetic bacteria (Desulfovibrio magneticus). Magnetite crystals formed by Fe(III)-reducing bacteria are epicellular, poorly crystalline, irregular in shapes, having a size range of 10–50 nm super-paramagnetic particles, with a saturation magnetization value ranging from 75–77 emu/g and are not aligned in chains. Magnetite crystals produced by MTB have uniform species-specific morphologies and sizes, which are mostly unknown from inorganic systems. The unusual characteristics of magnetosome particles have attracted a great interdisciplinary interest and inspired numerous ideas for their biotechnological applications. The nanoparticles synthesized through biological method are uniform with size ranging from 5 to 100 nm, which can potentially be used for various applications.

This is a preview of subscription content, access via your institution.

References

  1. Addadi L and Weiner S 1992 Angew. Chem. Int. Ed. 31 153

    Article  Google Scholar 

  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan M I, Kumar R and Sastry M 2002 J. Am. Chem. Soc. 124 12108

    Article  CAS  Google Scholar 

  3. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R and Sastry M 2003a Colloids Surf. B: Biointerf. 28 313

    Article  CAS  Google Scholar 

  4. Ahmad A, Senapati S, Khan M I, Kumar R, Ramani R, Srinivas V and Sastry M 2003b Nanotechnology 14 824

    Article  CAS  Google Scholar 

  5. Bansal V, Rautaray D, Ahmad A and Sastry M 2004 J. Mater. Chem. 14 3303

    Article  CAS  Google Scholar 

  6. Bhainsa K C and D’Souza S F 2006 Colloids Surf. B: Biointerf. 47 160

    Article  CAS  Google Scholar 

  7. Bazylinski D A, Garratt-Reed A J and Frankel R B 1993 Microsc. Res. Tech. 27 389

    Article  Google Scholar 

  8. Bazylinski D A, Frankel R B and Konhauser K O 2007 J. Geomicrobiol. 24 465

    Article  CAS  Google Scholar 

  9. Bharde A, Wani A, Shouche Y, Joy P A, Prasad B L V and Sastry M 2005 J. Am. Chem. Soc. 127 9326

    Article  CAS  Google Scholar 

  10. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf S M, Sanyal M and Sastry M 2006 Small 2 135

    Article  CAS  Google Scholar 

  11. Blakemore R P 1975 Science 190 377

    Article  CAS  Google Scholar 

  12. Blakemore R P 1982 Annu. Rev. Microbiol. 36 217

    Article  CAS  Google Scholar 

  13. Blakemore R P, Maratea D and Wolfe R S 1979 J. Bacteriol. 140 720

    CAS  Google Scholar 

  14. Capek I 2004 Adv. Coll. Inter. Sci. 110 49

    Article  CAS  Google Scholar 

  15. Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E and Winge D R 1989 Nature 338 596

    Article  CAS  Google Scholar 

  16. Frankel R B, Papaefthymiou G C, Blakemore R P and O’Brien W 1983 Biochim. Biophys. Acta 763 147

    Article  CAS  Google Scholar 

  17. Huang K C and Ehrman S H 2007 Langmuir 23 1419

    Article  CAS  Google Scholar 

  18. Huber D 2005 Small 1 482

    Article  CAS  Google Scholar 

  19. Husseiny M I, El-Aziz M A, Badr Y and Mahmoud M A 2007 Spectrochim Acta A: Mol. Biomol. Spectrosc. 67 1003

    Article  CAS  Google Scholar 

  20. Joerger R, Klaus T and Granqvist C G 2000 Adv. Mater. 12 407

    Article  CAS  Google Scholar 

  21. Kalyanaraman R, Yoo S, Krupashankara M S, Sudarshan T S and Dowding R J 1998 Nanostruct. Mater. 10 1379

    Article  CAS  Google Scholar 

  22. Klaus T, Joerger R, Olsson E and Granqvist C 1999 Proc. Natl. Acad. Sci. USA 96 13611

    Article  CAS  Google Scholar 

  23. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni S K and Paknikar K M 2002 Biotechnol. Bioeng. 78 583

    Article  CAS  Google Scholar 

  24. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni S K and Paknikar K M 2003 Nanotechnol. 14 95

    Article  CAS  Google Scholar 

  25. Lester E, Blood P, Denyer J, Giddings D, Azzopardi B and Poliakoff M J 2006 Supercrit. Fluids 37 209

    Article  CAS  Google Scholar 

  26. Mandal D, Bolander M E, Mukhopadhyay D, Sarkar G and Mukherjee P 2006 Appl. Microbiol. Biotechnol. 69 485

    Article  CAS  Google Scholar 

  27. Mann S 1993 Nature 365 499

    Article  CAS  Google Scholar 

  28. Moon J, Roh Y, Lauf R J, Vali H, Yeary L W and Phelps T J 2007 J. Microbiol. Meth. 70 150

    Article  CAS  Google Scholar 

  29. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M I, Kumar R and Sastry M 2002 Chem. Bio. Chem. 3 461

    CAS  Google Scholar 

  30. Pithawalla Y B, El Shall M S and Deevi S C 2000 Intermetallics 8 1225

    Article  CAS  Google Scholar 

  31. Posfai M, Moskowitz B M, Arato B, Schuller D, Flies C, Bazylinski D A and Frankel R B 2006 Earth Planet. Sci. Lett. 249 444

    Article  CAS  Google Scholar 

  32. Rawers J, Cook D and Kim T 1999 Nanostruct. Mater. 11 331

    Article  CAS  Google Scholar 

  33. Roh Y, Lauf R J, McMillan A D, Zhang C, Rawn C J, Bai J and Phelps T J 2001 Solid State Commun. 118 529

    Article  CAS  Google Scholar 

  34. Roh Y et al 2006a Appl. Environ. Microbiol. 72 3236

    Article  CAS  Google Scholar 

  35. Roh Y, Vali H, Phelps T J and Moon J W 2006b J. Nanosci. Nanotech. 6 3517

    Article  CAS  Google Scholar 

  36. Schuler D 1999 J. Mol. Microbiol. Biotechnol. 1 79

    CAS  Google Scholar 

  37. Shankar S S, Absar A and Murali S 2003 Biotechnol. Prog. 19 1627

    Article  CAS  Google Scholar 

  38. Sparks N H C, Lloyd J and Board R G 1989 Lett. Appl. Microbiol. 8 109

    Article  Google Scholar 

  39. Tavakoli A, Sohrabi M and Kargari A 2007 Chem. Pap. 61 151

    Article  CAS  Google Scholar 

  40. Theil E 1987 Ann. Rev. Biochem. 56 289

    Article  CAS  Google Scholar 

  41. Thomas-Keprta K L et al 2000 Geochim. Cosmochim. Acta 64 4049

    Article  CAS  Google Scholar 

  42. Thomas-Keprta K L et al 2001 Proc. Natl. Acad. Sci. USA 98 2164

    Article  CAS  Google Scholar 

  43. Varadan V K, Chen L and Xie J 2008 Nanomedicine: design and applications of magnetic nanomaterials, nanosensors and nanosystems (New York: Wiley Publication)

    Google Scholar 

  44. Yeary L W, Moon J W, Love L J, Thompson J R, Raw C J and Phelps T J 2005 IEEE Trans. Magn. 41 4384

    Article  CAS  Google Scholar 

  45. Yonghong He, Jinying Y, Fengyi Su, Xinhui Xing and Gaoquan S 2006 J. Phys. Chem. B110 17813

    Article  Google Scholar 

  46. Yoshimura M and Somiya S 1999 Mater. Chem. Phys. 61 1

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to ABHILASH.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

ABHILASH, REVATI, K. & PANDEY, B.D. Microbial synthesis of iron-based nanomaterials—A review. Bull Mater Sci 34, 191–198 (2011). https://doi.org/10.1007/s12034-011-0076-6

Download citation

Keywords

  • Nanoparticles
  • biosynthesis
  • microbes
  • iron reducing bacteria
  • sulphate reducing bacteria
  • magnetotactic bacteria