Bulletin of Materials Science

, Volume 34, Issue 2, pp 191–198 | Cite as

Microbial synthesis of iron-based nanomaterials—A review



Nanoparticles are the materials having dimensions of the order of 100 nm or less. They exhibit a high surface/volume ratio leading to different properties far different from those of the bulk materials. The development of uniform nanoparticles has been intensively pursued because of their technological and fundamental scientific importance. A number of chemical methods are available and are extensively used, but these are often energy intensive and employ toxic chemicals. An alternative approach for the synthesis of uniform nanoparticles is the biological route that occurs at ambient temperature, pressure and at neutral pH. The main aim of this review is to enlist and compare various methods of synthesis of iron-based nanoparticles with emphasis on the biological method. Biologically induced and controlled mineralization mechanisms are the two modes through which the micro-organisms synthesize iron oxide nanoparticles. In biologically induced mineralization (BIM) mode, the environmental factors like pH, pO2, pCO2, redox potential, temperature etc govern the synthesis of iron oxide nanoparticles. In contrast, biologically controlled mineralization (BCM) process initiates the micro-organism itself to control the synthesis. BIM can be observed in the Fe(III) reducing bacterial species of Shewanella, Geobacter, Thermoanaerobacter, and sulphate reducing bacterial species of Archaeoglobus fulgidus, Desulfuromonas acetoxidans, whereas BCM mode can be observed in the magnetotactic bacteria (MTB) like Magnetospirillum magnetotacticum, M. gryphiswaldense and sulphate-reducing magnetic bacteria (Desulfovibrio magneticus). Magnetite crystals formed by Fe(III)-reducing bacteria are epicellular, poorly crystalline, irregular in shapes, having a size range of 10–50 nm super-paramagnetic particles, with a saturation magnetization value ranging from 75–77 emu/g and are not aligned in chains. Magnetite crystals produced by MTB have uniform species-specific morphologies and sizes, which are mostly unknown from inorganic systems. The unusual characteristics of magnetosome particles have attracted a great interdisciplinary interest and inspired numerous ideas for their biotechnological applications. The nanoparticles synthesized through biological method are uniform with size ranging from 5 to 100 nm, which can potentially be used for various applications.


Nanoparticles biosynthesis microbes iron reducing bacteria sulphate reducing bacteria magnetotactic bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addadi L and Weiner S 1992 Angew. Chem. Int. Ed. 31 153CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan M I, Kumar R and Sastry M 2002 J. Am. Chem. Soc. 124 12108CrossRefGoogle Scholar
  3. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R and Sastry M 2003a Colloids Surf. B: Biointerf. 28 313CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan M I, Kumar R, Ramani R, Srinivas V and Sastry M 2003b Nanotechnology 14 824CrossRefGoogle Scholar
  5. Bansal V, Rautaray D, Ahmad A and Sastry M 2004 J. Mater. Chem. 14 3303CrossRefGoogle Scholar
  6. Bhainsa K C and D’Souza S F 2006 Colloids Surf. B: Biointerf. 47 160CrossRefGoogle Scholar
  7. Bazylinski D A, Garratt-Reed A J and Frankel R B 1993 Microsc. Res. Tech. 27 389CrossRefGoogle Scholar
  8. Bazylinski D A, Frankel R B and Konhauser K O 2007 J. Geomicrobiol. 24 465CrossRefGoogle Scholar
  9. Bharde A, Wani A, Shouche Y, Joy P A, Prasad B L V and Sastry M 2005 J. Am. Chem. Soc. 127 9326CrossRefGoogle Scholar
  10. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf S M, Sanyal M and Sastry M 2006 Small 2 135CrossRefGoogle Scholar
  11. Blakemore R P 1975 Science 190 377CrossRefGoogle Scholar
  12. Blakemore R P 1982 Annu. Rev. Microbiol. 36 217CrossRefGoogle Scholar
  13. Blakemore R P, Maratea D and Wolfe R S 1979 J. Bacteriol. 140 720Google Scholar
  14. Capek I 2004 Adv. Coll. Inter. Sci. 110 49CrossRefGoogle Scholar
  15. Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E and Winge D R 1989 Nature 338 596CrossRefGoogle Scholar
  16. Frankel R B, Papaefthymiou G C, Blakemore R P and O’Brien W 1983 Biochim. Biophys. Acta 763 147CrossRefGoogle Scholar
  17. Huang K C and Ehrman S H 2007 Langmuir 23 1419CrossRefGoogle Scholar
  18. Huber D 2005 Small 1 482CrossRefGoogle Scholar
  19. Husseiny M I, El-Aziz M A, Badr Y and Mahmoud M A 2007 Spectrochim Acta A: Mol. Biomol. Spectrosc. 67 1003CrossRefGoogle Scholar
  20. Joerger R, Klaus T and Granqvist C G 2000 Adv. Mater. 12 407CrossRefGoogle Scholar
  21. Kalyanaraman R, Yoo S, Krupashankara M S, Sudarshan T S and Dowding R J 1998 Nanostruct. Mater. 10 1379CrossRefGoogle Scholar
  22. Klaus T, Joerger R, Olsson E and Granqvist C 1999 Proc. Natl. Acad. Sci. USA 96 13611CrossRefGoogle Scholar
  23. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni S K and Paknikar K M 2002 Biotechnol. Bioeng. 78 583CrossRefGoogle Scholar
  24. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni S K and Paknikar K M 2003 Nanotechnol. 14 95CrossRefGoogle Scholar
  25. Lester E, Blood P, Denyer J, Giddings D, Azzopardi B and Poliakoff M J 2006 Supercrit. Fluids 37 209CrossRefGoogle Scholar
  26. Mandal D, Bolander M E, Mukhopadhyay D, Sarkar G and Mukherjee P 2006 Appl. Microbiol. Biotechnol. 69 485CrossRefGoogle Scholar
  27. Mann S 1993 Nature 365 499CrossRefGoogle Scholar
  28. Moon J, Roh Y, Lauf R J, Vali H, Yeary L W and Phelps T J 2007 J. Microbiol. Meth. 70 150CrossRefGoogle Scholar
  29. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M I, Kumar R and Sastry M 2002 Chem. Bio. Chem. 3 461Google Scholar
  30. Pithawalla Y B, El Shall M S and Deevi S C 2000 Intermetallics 8 1225CrossRefGoogle Scholar
  31. Posfai M, Moskowitz B M, Arato B, Schuller D, Flies C, Bazylinski D A and Frankel R B 2006 Earth Planet. Sci. Lett. 249 444CrossRefGoogle Scholar
  32. Rawers J, Cook D and Kim T 1999 Nanostruct. Mater. 11 331CrossRefGoogle Scholar
  33. Roh Y, Lauf R J, McMillan A D, Zhang C, Rawn C J, Bai J and Phelps T J 2001 Solid State Commun. 118 529CrossRefGoogle Scholar
  34. Roh Y et al 2006a Appl. Environ. Microbiol. 72 3236CrossRefGoogle Scholar
  35. Roh Y, Vali H, Phelps T J and Moon J W 2006b J. Nanosci. Nanotech. 6 3517CrossRefGoogle Scholar
  36. Schuler D 1999 J. Mol. Microbiol. Biotechnol. 1 79Google Scholar
  37. Shankar S S, Absar A and Murali S 2003 Biotechnol. Prog. 19 1627CrossRefGoogle Scholar
  38. Sparks N H C, Lloyd J and Board R G 1989 Lett. Appl. Microbiol. 8 109CrossRefGoogle Scholar
  39. Tavakoli A, Sohrabi M and Kargari A 2007 Chem. Pap. 61 151CrossRefGoogle Scholar
  40. Theil E 1987 Ann. Rev. Biochem. 56 289CrossRefGoogle Scholar
  41. Thomas-Keprta K L et al 2000 Geochim. Cosmochim. Acta 64 4049CrossRefGoogle Scholar
  42. Thomas-Keprta K L et al 2001 Proc. Natl. Acad. Sci. USA 98 2164CrossRefGoogle Scholar
  43. Varadan V K, Chen L and Xie J 2008 Nanomedicine: design and applications of magnetic nanomaterials, nanosensors and nanosystems (New York: Wiley Publication)Google Scholar
  44. Yeary L W, Moon J W, Love L J, Thompson J R, Raw C J and Phelps T J 2005 IEEE Trans. Magn. 41 4384CrossRefGoogle Scholar
  45. Yonghong He, Jinying Y, Fengyi Su, Xinhui Xing and Gaoquan S 2006 J. Phys. Chem. B110 17813CrossRefGoogle Scholar
  46. Yoshimura M and Somiya S 1999 Mater. Chem. Phys. 61 1CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.National Metallurgical Laboratory (CSIR-NML)JamshedpurIndia

Personalised recommendations