Bulletin of Materials Science

, Volume 33, Issue 4, pp 357–364

Temperature dependent growth and optical properties of SnO2 nanowires and nanobelts

  • S. P. Mondal
  • S. K. Ray
  • J. Ravichandran
  • I. Manna


SnO2 nanowires and nanobelts have been grown by the thermal evaporation of Sn powders. The growth of nanowires and nanobelts has been investigated at different temperatures (750–1000°C). The field emission scanning electron microscopic and transmission electron microscopic studies revealed the growth of nanowires and nano-belts at different growth temperatures. The growth mechanisms of the formation of the nanostructures have also been discussed. X-ray diffraction patterns showed that the nanowires and nanobelts are highly crystalline with tetragonal rutile phase. UV-visible absorption spectrum showed the bulk bandgap value (∼ 3–6 eV) of SnO2. Photoluminescence spectra demonstrated a Stokes-shifted emission in the wavelength range 558–588 nm. The Raman and Fourier transform infrared spectra revealed the formation of stoichiometric SnO2 at different growth temperatures.


SnO2 nanostructures growth mechanism optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amalric-Popescu D and Bozon-Verduraz F 2001 Catal. Today 70 139CrossRefGoogle Scholar
  2. Ansari G, Boroojerdian P, Sainkar S R, Karekar R N, Aiyer R C and Kulkarni S K 1997 Thin Solid Films 295 271CrossRefADSGoogle Scholar
  3. Beltran A, Andres J, Longo E and Leite E R 2003 Appl. Phys. Lett. 83 635CrossRefADSGoogle Scholar
  4. Calestani D, Lazzarini L, Salviati G and Zha M 2005 Cryst. Res. & Technol. 40 937CrossRefGoogle Scholar
  5. Camagni P et al 1996 Sens. Actuators B31 99Google Scholar
  6. Comini E, Faglia G, Sberveglieri G, Pan Z and Wang Z L 2002 Appl. Phys. Lett. 81 1869CrossRefADSGoogle Scholar
  7. Dai Z R, Pan Z W and Wang Z L 2001 Solid State Commun. 118 351CrossRefADSGoogle Scholar
  8. Dattoli E N, Wan Q, Guo W, Chen Y, Pan X and Lu W 2007 Nano Lett. 7 2469CrossRefADSGoogle Scholar
  9. Duan J, Yang S, Liu H, Gong J, Huang H, Zhao X, Zhang R and Du Y 2005 J. Am. Chem. Soc. 127 6180CrossRefPubMedGoogle Scholar
  10. Duan X F, Huang Y, Cui Y, Wang J and Leiber C M 2001 Nature (London) 409 66CrossRefADSGoogle Scholar
  11. Ferrere S, Zaban A and Gsegg B A 1997 J. Phys. Chem. B101 4490Google Scholar
  12. He J H, Wu T H, Hsin C L, Li K M, Chen L J, Chueh Yu L, Chou L J and Wang Z L 2006 Small 2 116CrossRefPubMedGoogle Scholar
  13. Her Y C, Wu J Y, Lin Y R and Tsai S Y 2006 Appl. Phys. Lett. 89 043115CrossRefADSGoogle Scholar
  14. He Y S, Cambell J C, Murphy R C, Arendt M F and Swinnea J S 1993 J. Mater. Res. 8 3131CrossRefADSGoogle Scholar
  15. Hu J Q, Bando Y, Liu Q L and Golberg D 2003 Adv. Funct. Mater. 13 493CrossRefGoogle Scholar
  16. Kolmakov A, Klenov D O, Lilach Y, Stemmer S and Moskovits M 2005 Nano Lett. 5 667CrossRefADSPubMedGoogle Scholar
  17. Liang C H, Meng G W, Wang G Z, Wang Y W and Zhang L D 2001 Appl. Phys. Lett. 78 3202CrossRefADSGoogle Scholar
  18. Ma Y J, Zhou F, Lu L and Zhang Z 2004 Solid State Commun. 130 313CrossRefADSGoogle Scholar
  19. Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947CrossRefADSPubMedGoogle Scholar
  20. Peng X S, Zhang L D, Meng G W, Tian Y, Lin T Y, Geng B Y and Sun S H 2003 J. Appl. Phys. 93 1760CrossRefADSGoogle Scholar
  21. Porto S P S, Fleury P A and Damen T C 1967 Phys. Rev. 154 522CrossRefADSGoogle Scholar
  22. Power G, Vij J K and Shaw M 2004 J. Phys. D: Appl. Phys. 37 1362CrossRefADSGoogle Scholar
  23. Sears G W 1955 Acta Metall. 3 361CrossRefGoogle Scholar
  24. Trindade T, Brien P O and Pichett N L 2001 Chem. Mater. 13 3834CrossRefGoogle Scholar
  25. Varghese O K and Malhotra L K 1998 Sens. Actuators B53 19Google Scholar
  26. Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89CrossRefADSGoogle Scholar
  27. Wang J X et al 2004 Solid State Commun. 130 89CrossRefADSGoogle Scholar
  28. Wang W Z, Xu C K, Wang G H, Liu Y K and Zheng C L 2002 J. Appl. Phys. 92 2740CrossRefADSGoogle Scholar
  29. Wang Z L, Kong X Y and Zuo J M 2003 Phys. Rev. Lett. 91 185502CrossRefADSPubMedGoogle Scholar
  30. Wu Y and Yang P J 2001 J. Am. Chem. Soc. 123 3165CrossRefGoogle Scholar
  31. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. (Weinheim, Germany) 15 353CrossRefGoogle Scholar
  32. Yanes A C et al 2004 Appl. Phys. Lett. 85 2343CrossRefADSGoogle Scholar
  33. Yang P and Lieber C M 1997 J. Mater. Res. 12 2981CrossRefADSGoogle Scholar
  34. Yan Y, Zhang Ye, Zeng H, Zhang J, Cao X and Zhang L 2007 Nanotechnology 18 175601CrossRefADSGoogle Scholar
  35. Ye C N, Wu X M, Tang N Y, Zhuge L J, Yao W G, Chen J, Dong Y M and Yu Y H 2002 Sci. & Technol. Adv. Mater. 3 257CrossRefGoogle Scholar
  36. Zheng M, Li G, Zhang X, Huang S, Lei Y and Zhang L 2001 Chem. Mater. 13 3859CrossRefADSGoogle Scholar
  37. Zhou X T, Heigl F, Murphy M W, Sham T K, Regier T, Coulthard I and Blyth R I R 2006 Appl. Phys. Lett. 89 213109CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  • S. P. Mondal
    • 1
  • S. K. Ray
    • 1
  • J. Ravichandran
    • 2
  • I. Manna
    • 2
  1. 1.Department of Physics & MeteorologyIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Metallurgical & Materials EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations