Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders

Abstract

Next to atoms and molecules the powders are the smallest state of matter available in high purities and large quantities. The effect of any external energy on the shape, morphology and structure can thus be studied with relative ease. The present investigation deals with the effect of a non-contact external energy on the powders of antimony and bismuth. The characteristics of powders treated by external energy are compared with the as received powders (control). The average particle sizes, d 50 and d 99, the sizes below which 99% of the particles are present showed significant increase and decrease indicating that the energy had caused deformation and fracture as if the powders have been subjected to high energy milling.

To be able to understand the reasons for these changes the powders are characterized by techniques such as X-ray diffraction (XRD), surface area determination (BET), thermal analytical techniques such as DTA-DTG, DSC-TGA and SDTA and scanning electron microscopy (SEM).

The treated powder samples exhibited remarkable changes in the powder characteristics at all structural levels starting from polycrystalline particles, through single crystal to atoms. The external energy had changed the lattice parameters of the unit cell which in turn changed the crystallite size and density. The lattice parameters are then used to compute the weight and effective nuclear charge of the atom which showed significant variation. It is speculated that the external energy is acting on the nucleus through some reversible weak interaction of larger cross section causing changes in the proton to neutron ratios. Thus the effect is felt by all the atoms, and hence the unit cell, single crystal grain and grain boundaries. The stresses generated in turn may have caused deformation or fracture of the weak interfaces such as the crystallite and grain boundaries.

This is a preview of subscription content, access via your institution.

References

  1. Amarchand S, Mohan T R R and Ramakrishnan P 2000 Ultrafine grained materials (eds) R S Mishra et al (Warrendale PA, USA: The Minerals, Metals and Materials Society (TMS)) pp 33–40

    Google Scholar 

  2. Benjamin J S 1976 Sci. Am. 234 40

    CAS  Article  Google Scholar 

  3. Dabhade V V, Mohan T R R and Ramakrishnan P 2001 Appl. Surf. Sci. 182 390

    Article  CAS  ADS  Google Scholar 

  4. Fecht H J 1996 Nanomaterials: synthesis, properties and applications (eds) A S Edelstein and R C Cammarota (Bristol: Institute of Physics Publishing) pp 89–92

    Google Scholar 

  5. Gleiter H 1992 Nanostructured Mater. 1 1

    Article  CAS  Google Scholar 

  6. Mayo M J 1996 Int. Mater. Rev. 41 85

    CAS  Google Scholar 

  7. Mohan T R R, Murty T S, Ramakrishnan P and Gutmanas E Y 1999 Advances in powder metallurgy and particulate materials (eds) C L Rose and M H Thibadeau (Metal Powder Industries Federation, APMI), pp 159–164

  8. Suryanarayana C 1995 Int. Mater. Rev. 40 41

    CAS  Google Scholar 

  9. Suryanarayana C 1999 Non-equilibrium processing of materials (ed.) C Suryanarayana (Oxford: Pergamon Materials Series) pp 66–67

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vikram V. Dabhade.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dabhade, V.V., Tallapragada, R.M.R. & Trivedi, M.K. Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32, 471–479 (2009). https://doi.org/10.1007/s12034-009-0070-4

Download citation

Keywords

  • Antimony
  • bismuth
  • external energy
  • powder