Reactivity and resizing of gold nanorods in presence of Cu2+

Abstract

Due to the inherent anisotropy of the system, gold nanorods behave differently in comparison to their spherical counterparts. Reactivity of gold nanorods, in presence of cupric ions, was probed in an attempt to understand the chemistry of anisotropic particles. The reaction progresses through a series of intermediates. It can be arrested at any stage to get nanorods of desired dimension and therefore, can be used for their reshaping. The presence or absence of cetyltrimethylammonium bromide (CTAB) on the nanorod surface was found to be determining the site of initiation of the reaction. When a large concentration of CTAB is present in the system, selective etching of the tips of the nanorod occurs and when the nanorods are purified to reduce the amount of CTAB in the solution, the side faces of the nanorod also get reacted. Gold nanorods are converted to particles by further surface reconstructions in a systematic surface specific chemistry.

This is a preview of subscription content, log in to check access.

References

  1. Asplund K U M, Jansson P J, Lindqvist C and Nordström T 2002 Free Radical Res. 36 1271

    Article  CAS  Google Scholar 

  2. Bruck R, Shirin H, Aeed H, Matas Z, Hochman A, Pines M and Avni Y 2001 J. Hepatol. 35 457

    Article  CAS  Google Scholar 

  3. Carretero A S, Blanco C C, Diaz B C and Gutiérrez A F 1998 Anal. Chim. Acta 361 217

    Article  CAS  Google Scholar 

  4. Chang S-S, Shih C-W, Chen C-D, Lai W-C and Wang C R C 1999 Langmuir 15 701

    Article  CAS  Google Scholar 

  5. Foss Jr C A, Hornyak G L, Stockert J A and Martin C R 1992 J. Phys. Chem. 96 7497

    Article  CAS  Google Scholar 

  6. Jana N R, Gearheart L, Obare S O and Murphy C J 2002 Langmuir 18 922

    Article  CAS  Google Scholar 

  7. Jin Y and Friedman N 2005 J. Am. Chem. Soc. 127 11902

    Google Scholar 

  8. Juste J P, Santos I P, Liz-Marzan L M and Mulvaney P 2005 Coord. Chem. Rev. 249 1870

    Article  Google Scholar 

  9. Kadiiska M B, Hanna P M, Hernandez L and Mason R P 1992 Mol. Pharmacol. 42 723

    CAS  Google Scholar 

  10. Kim F, Song J H and Yang P 2002 J. Am. Chem. Soc. 124 14316

    Google Scholar 

  11. Kline T R, Paxton W F, Mallouk T E and Sen A 2005 Angew. Chem., Int. Ed. 44 744

    Article  CAS  Google Scholar 

  12. Koppenol W H and Liebman J F 1984 J. Phys. Chem. 88 99

    Article  CAS  Google Scholar 

  13. Link S, Burda C, Nikoobakht B and El-Sayed M A 2000 J. Phys. Chem. B104 6152

    Google Scholar 

  14. Liu F-K, Chang Y-C, Ko F-H and Chu T-C 2004 Mater. Lett. 58 373

    Article  CAS  Google Scholar 

  15. Martin C R 1996 Chem. Mater. 8 1739

    Article  CAS  Google Scholar 

  16. Mohamed M B, Ismail K Z, Link S and El-Sayed M A 1998 J. Phys. Chem. B102 9370

    Google Scholar 

  17. Nair A S 2006 Chemistry of halocarbons with bare and protected silver and gold nanoparticles, Ph D Thesis, Indian Institute of Technology, Madras

    Google Scholar 

  18. Nair A S and Pradeep T 2003 Curr. Sci. 84 1560

    CAS  Google Scholar 

  19. Nair A S and Pradeep T 2004 Indian Patent No. 51/CHE/2004

  20. Nair A S and Pradeep T 2007 International Patent PCT application no. PCT/IN05/00022

  21. Norberg N S, Dalpian G M, Chelikowsky J R and Gamelin D R 2006 Nano Lett. 6 2887

    Article  CAS  Google Scholar 

  22. Prakash A, McCormick A V and Zachariah M R 2005 Nano Lett. 5 1357

    Article  CAS  Google Scholar 

  23. Rajeev Kumar V R, Samal A K, Sreeprasad T S and Pradeep T 2007 Langmuir 23 8667

    Article  Google Scholar 

  24. Rao C N R, Kulkarni G U, Thomas P J and Edwards P P 2000 Chem. Soc. Rev. 28 27

    Article  Google Scholar 

  25. Rodriguez-Fernandez J, Perez-Juste J, Mulvaney P and Liz-Marzan L M 2005 J. Phys. Chem. B109 14257

    Google Scholar 

  26. Salem A K, Searson P C and Leong K W 2003 Nat. Mater. 2 668

    Article  CAS  Google Scholar 

  27. Sau T K and Murphy C J 2004 Langmuir 20 6414

    Article  CAS  Google Scholar 

  28. Smith E A and Corn R M 2003 Appl. Spectrosc. 57 320A

    Article  CAS  Google Scholar 

  29. Song D K, Lenggoro I W, Hayashi Y, Okuyama K and Kim S S 2005 Langmuir 21 10375

  30. Sreeprasad T S, Samal A K and Pradeep T 2007 Langmuir 23 9463

    Article  CAS  Google Scholar 

  31. Subramaniam C, Pradeep T and Chakrabarti J 2005 Phys. Rev. Lett. 95 164501

  32. Subramaniam C, Pradeep T and Chakrabarti J 2007 J. Phys. Chem. C111 19103

    Google Scholar 

  33. Todd B D and Lynden-Bell R M 1993 Surf. Sci. 281 191

    Article  CAS  Google Scholar 

  34. Tom R T, Samal A K, Sreeprasad T S and Pradeep T 2007 Langmuir 23 1320

    Article  CAS  Google Scholar 

  35. Tsung C K, Kou X, Shi Q, Zhang J, Yeung M H, Wang J and Stucky G D 2006 J. Am. Chem. Soc. 128 5352

    Article  CAS  Google Scholar 

  36. Uppenbrink J, Johnston R L and Murrell J N 1994 Surf. Sci. 304 223

    Article  CAS  Google Scholar 

  37. Wang Z L, Gao R P, Nikoobakht B and El-Sayed M A 2000 J. Phys. Chem. B104 5417

    Google Scholar 

  38. Yu Y Y, Chang S S, Lee C L and Wang C R C 1997 J. Phys. Chem. B101 6661

    Google Scholar 

  39. Zhan B-Z, White M A, Lumsden M, Mueller-Neuhaus J, Robertson K N, Cameron T S and Gharghouri M 2002 Chem. Mater. 14 3636

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Pradeep.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sreeprasad, T.S., Samal, A.K. & Pradeep, T. Reactivity and resizing of gold nanorods in presence of Cu2+ . Bull Mater Sci 31, 219–224 (2008). https://doi.org/10.1007/s12034-008-0039-8

Download citation

Keywords

  • Gold nanorods
  • anisotropic particles
  • Cu2+