Bulletin of Materials Science

, Volume 31, Issue 3, pp 219–224 | Cite as

Reactivity and resizing of gold nanorods in presence of Cu2+

  • T. S. Sreeprasad
  • A. K. Samal
  • T. PradeepEmail author


Due to the inherent anisotropy of the system, gold nanorods behave differently in comparison to their spherical counterparts. Reactivity of gold nanorods, in presence of cupric ions, was probed in an attempt to understand the chemistry of anisotropic particles. The reaction progresses through a series of intermediates. It can be arrested at any stage to get nanorods of desired dimension and therefore, can be used for their reshaping. The presence or absence of cetyltrimethylammonium bromide (CTAB) on the nanorod surface was found to be determining the site of initiation of the reaction. When a large concentration of CTAB is present in the system, selective etching of the tips of the nanorod occurs and when the nanorods are purified to reduce the amount of CTAB in the solution, the side faces of the nanorod also get reacted. Gold nanorods are converted to particles by further surface reconstructions in a systematic surface specific chemistry.


Gold nanorods anisotropic particles Cu2+ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asplund K U M, Jansson P J, Lindqvist C and Nordström T 2002 Free Radical Res. 36 1271CrossRefGoogle Scholar
  2. Bruck R, Shirin H, Aeed H, Matas Z, Hochman A, Pines M and Avni Y 2001 J. Hepatol. 35 457CrossRefGoogle Scholar
  3. Carretero A S, Blanco C C, Diaz B C and Gutiérrez A F 1998 Anal. Chim. Acta 361 217CrossRefGoogle Scholar
  4. Chang S-S, Shih C-W, Chen C-D, Lai W-C and Wang C R C 1999 Langmuir 15 701CrossRefGoogle Scholar
  5. Foss Jr C A, Hornyak G L, Stockert J A and Martin C R 1992 J. Phys. Chem. 96 7497CrossRefGoogle Scholar
  6. Jana N R, Gearheart L, Obare S O and Murphy C J 2002 Langmuir 18 922CrossRefGoogle Scholar
  7. Jin Y and Friedman N 2005 J. Am. Chem. Soc. 127 11902Google Scholar
  8. Juste J P, Santos I P, Liz-Marzan L M and Mulvaney P 2005 Coord. Chem. Rev. 249 1870CrossRefGoogle Scholar
  9. Kadiiska M B, Hanna P M, Hernandez L and Mason R P 1992 Mol. Pharmacol. 42 723Google Scholar
  10. Kim F, Song J H and Yang P 2002 J. Am. Chem. Soc. 124 14316Google Scholar
  11. Kline T R, Paxton W F, Mallouk T E and Sen A 2005 Angew. Chem., Int. Ed. 44 744CrossRefGoogle Scholar
  12. Koppenol W H and Liebman J F 1984 J. Phys. Chem. 88 99CrossRefGoogle Scholar
  13. Link S, Burda C, Nikoobakht B and El-Sayed M A 2000 J. Phys. Chem. B104 6152Google Scholar
  14. Liu F-K, Chang Y-C, Ko F-H and Chu T-C 2004 Mater. Lett. 58 373CrossRefGoogle Scholar
  15. Martin C R 1996 Chem. Mater. 8 1739CrossRefGoogle Scholar
  16. Mohamed M B, Ismail K Z, Link S and El-Sayed M A 1998 J. Phys. Chem. B102 9370Google Scholar
  17. Nair A S 2006 Chemistry of halocarbons with bare and protected silver and gold nanoparticles, Ph D Thesis, Indian Institute of Technology, MadrasGoogle Scholar
  18. Nair A S and Pradeep T 2003 Curr. Sci. 84 1560Google Scholar
  19. Nair A S and Pradeep T 2004 Indian Patent No. 51/CHE/2004Google Scholar
  20. Nair A S and Pradeep T 2007 International Patent PCT application no. PCT/IN05/00022Google Scholar
  21. Norberg N S, Dalpian G M, Chelikowsky J R and Gamelin D R 2006 Nano Lett. 6 2887CrossRefGoogle Scholar
  22. Prakash A, McCormick A V and Zachariah M R 2005 Nano Lett. 5 1357CrossRefGoogle Scholar
  23. Rajeev Kumar V R, Samal A K, Sreeprasad T S and Pradeep T 2007 Langmuir 23 8667CrossRefGoogle Scholar
  24. Rao C N R, Kulkarni G U, Thomas P J and Edwards P P 2000 Chem. Soc. Rev. 28 27CrossRefGoogle Scholar
  25. Rodriguez-Fernandez J, Perez-Juste J, Mulvaney P and Liz-Marzan L M 2005 J. Phys. Chem. B109 14257Google Scholar
  26. Salem A K, Searson P C and Leong K W 2003 Nat. Mater. 2 668CrossRefGoogle Scholar
  27. Sau T K and Murphy C J 2004 Langmuir 20 6414CrossRefGoogle Scholar
  28. Smith E A and Corn R M 2003 Appl. Spectrosc. 57 320ACrossRefGoogle Scholar
  29. Song D K, Lenggoro I W, Hayashi Y, Okuyama K and Kim S S 2005 Langmuir 21 10375Google Scholar
  30. Sreeprasad T S, Samal A K and Pradeep T 2007 Langmuir 23 9463CrossRefGoogle Scholar
  31. Subramaniam C, Pradeep T and Chakrabarti J 2005 Phys. Rev. Lett. 95 164501Google Scholar
  32. Subramaniam C, Pradeep T and Chakrabarti J 2007 J. Phys. Chem. C111 19103Google Scholar
  33. Todd B D and Lynden-Bell R M 1993 Surf. Sci. 281 191CrossRefGoogle Scholar
  34. Tom R T, Samal A K, Sreeprasad T S and Pradeep T 2007 Langmuir 23 1320CrossRefGoogle Scholar
  35. Tsung C K, Kou X, Shi Q, Zhang J, Yeung M H, Wang J and Stucky G D 2006 J. Am. Chem. Soc. 128 5352CrossRefGoogle Scholar
  36. Uppenbrink J, Johnston R L and Murrell J N 1994 Surf. Sci. 304 223CrossRefGoogle Scholar
  37. Wang Z L, Gao R P, Nikoobakht B and El-Sayed M A 2000 J. Phys. Chem. B104 5417Google Scholar
  38. Yu Y Y, Chang S S, Lee C L and Wang C R C 1997 J. Phys. Chem. B101 6661Google Scholar
  39. Zhan B-Z, White M A, Lumsden M, Mueller-Neuhaus J, Robertson K N, Cameron T S and Gharghouri M 2002 Chem. Mater. 14 3636CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Department of Chemistry and Sophisticated Analytical Instrument FacilityIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations