Skip to main content
Log in

A Novel Neutrophil Extracellular Trap Signature Predicts Patient Chemotherapy Resistance and Prognosis in Lung Adenocarcinoma

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Chemoresistance is a key obstacle in the long-term survival of patients with locally and advanced lung adenocarcinoma (LUAD). This study used bioinformatic analysis to reveal the chemoresistance of gene-neutrophil extracellular traps (NETs) associated with LUAD. RNA sequencing data and LUAD expression patterns were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively. The GeneCards database was used to identify NETosis-related genes (NRGs). To identify hub genes with significant and consistent expression, differential analysis was performed using the TCGA-LUAD and GEO datasets. LUAD subtypes were determined based on these hub genes, followed by prognostic analysis. Immunological scoring and infiltration analysis were conducted using NETosis scores (N-scores) derived from the TCGA-LUAD dataset. A clinical prognostic model was established and analyzed, and its clinical applications explored. Twenty-two hub genes were identified, and consensus clustering was used to identify two subgroups based on their expression levels. The Kaplan–Meier (KM) curves demonstrated statistically significant differences in prognosis between the two LUAD subtypes. Based on the median score, patients were further divided into high and low N-score groups, and KM curves showed that the N-scores were more precise at predicting the prognosis of patients with LUAD for overall survival (OS). Immunological infiltration analysis revealed significant differences in the abundances of 10 immune cell infiltrates between the high and low N-score groups. Risk scores indicated significant differences in prognosis between the two extreme score groups. The risk scores for the prognostic model also indicated significant differences between the two groups. The results provide new insights into NETosis-related differentially expressed genes (NRDEGs) associated with chemotherapy resistance in patients with LUAD. The established prognostic model is promising and could help with clinical applications to evaluate patient survival and therapeutic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article.

Abbreviations

LUAD:

Lung adenocarcinoma

NETs:

Gene-neutrophil extracellular traps

TCGA:

The Cancer Genome Atlas

GEO:

Gene expression omnibus

NRGs:

NETosis-related genes

Nscores:

NETosis scores

KM:

Kaplan–Meier

OS:

Overall survival

NRDEGs:

NETosis-related differentially expressed genes

FPKM:

Fragments per kilobase per million

TMB:

Tumor mutation burden

MSI:

Microsatellite instability

SNPs:

Single nucleotide polymorphisms

CNV:

Copy number variation

PPI:

Protein–protein interaction

GO:

Gene Ontology

BP:

Biological processes

MF:

Molecular functions

CC:

Cellular components

KEGG:

Kyoto encyclopedia of genes and genomes

GSVA:

Gene set variation analysis

ssGSEA:

Single-sample gene-set enrichment analysis

TME:

Tumor immunological microenvironment

INS:

Number of insertions

CDF:

Cumulative distribution function

PCA:

Principal component analysis

ROC:

Receiver operating characteristic curve

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    PubMed  Google Scholar 

  2. Li, Y., Yan, B., & He, S. (2023). Advances and challenges in the treatment of lung cancer. Biomedicine & pharmacotherapy Biomedecine & pharmacotherapie, 169, 115891.

    Article  CAS  Google Scholar 

  3. Raman, L., Van der Linden, M., Van der Eecken, K., et al. (2020). Shallow whole-genome sequencing of plasma cell-free DNA accurately differentiates small from non-small cell lung carcinoma. Genome Medicine, 12(1), 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller, M., & Hanna, N. (2021). Advances in systemic therapy for non-small cell lung cancer. BMJ (Clinical Research ed.), 375, n2363.

    PubMed  Google Scholar 

  5. Lau, M. T., Ghazanfar, S., Parkin, A., et al. (2020). Systematic functional identification of cancer multi-drug resistance genes. Genome Biology, 21(1), 27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Bont, C. M., Boelens, W. C., & Pruijn, G. J. M. (2019). NETosis, complement, and coagulation: A triangular relationship. Cellular & Molecular Immunology, 16(1), 19–27.

    Article  Google Scholar 

  7. Masucci, M. T., Minopoli, M., Del Vecchio, S., et al. (2020). The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Frontiers in Immunology, 11, 1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cristinziano, L., Modestino, L., Antonelli, A., et al. (2022). Neutrophil extracellular traps in cancer. Seminars in Cancer Biology, 79, 91–104.

    Article  CAS  PubMed  Google Scholar 

  9. Mousset, A., Lecorgne, E., Bourget, I., et al. (2023). Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell, 41(4), 757-775.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saw, P. E., Chen, J., & Song, E. (2023). ChemoNETosis: A road to tumor therapeutic resistance. Cancer Cell, 41(4), 655–657.

    Article  CAS  PubMed  Google Scholar 

  11. Colaprico, A., Silva, T. C., Olsen, C., et al. (2016). TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Research, 44(8), e71.

    Article  PubMed  Google Scholar 

  12. Goldman, M. J., Craft, B., Hastie, M., et al. (2020). Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnology, 38(6), 675–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mayakonda, A., Lin, D. C., Assenov, Y., et al. (2018). Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Research, 28(11), 1747–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mermel, C. H., Schumacher, S. E., Hill, B., et al. (2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology, 12(4), 41.

    Article  Google Scholar 

  15. Zhang, W., Gong, W., Ai, H., et al. (2014). Gene expression analysis of lung adenocarcinoma and matched adjacent non-tumor lung tissue. Tumori, 100(3), 338–345.

    PubMed  Google Scholar 

  16. Wei, T. Y., Juan, C. C., Hisa, J. Y., et al. (2012). Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Science, 103(9), 1640–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barrett, T., Troup, D. B., Wilhite, S. E., et al. (2007). NCBI GEO: Mining tens of millions of expression profiles–database and tools update. Nucleic Acids Research, 35, D760–D765.

    Article  CAS  PubMed  Google Scholar 

  18. Davis, S., & Meltzer, P. S. (2007). GEOquery: A bridge between the gene expression omnibus (GEO) and bioconductor. Bioinformatics (Oxford, England), 23(14), 1846–1847.

    PubMed  Google Scholar 

  19. Stelzer, G., Rosen, N., Plaschkes, I., et al. (2016). The genecards suite: From gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics, 54, 1–33.

    Article  Google Scholar 

  20. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Szklarczyk, D., Gable, A. L., Lyon, D., et al. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613.

    Article  CAS  PubMed  Google Scholar 

  22. Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franz, M., Rodriguez, H., Lopes, C., et al. (2018). GeneMANIA update 2018. Nucleic Acids Research, 46(W1), W60–W64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, G. (2020). Gene ontology semantic similarity analysis using GOSemSim. Methods in Molecular Biology, 2117, 207–215.

    Article  CAS  PubMed  Google Scholar 

  25. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brière, G., Darbo, É., Thébault, P., et al. (2021). Consensus clustering applied to multi-omics disease subtyping. BMC Bioinformatics, 22(1), 361.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilkerson, M. D., & Hayes, D. N. (2010). ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics (Oxford, England), 26(12), 1572–1573.

    CAS  PubMed  Google Scholar 

  28. Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 14, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yoshihara, K., Shahmoradgoli, M., Martínez, E., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications, 4, 2612.

    Article  PubMed  Google Scholar 

  30. Bindea, G., Mlecnik, B., Tosolini, M., et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 39(4), 782–795.

    Article  CAS  PubMed  Google Scholar 

  31. Newman, A. M., Liu, C. L., Green, M. R., et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park, S. Y. (2018). Nomogram: An analogue tool to deliver digital knowledge. The Journal of Thoracic and Cardiovascular Surgery, 155(4), 1793.

    Article  PubMed  Google Scholar 

  33. Perkins, N. J., Weck, J., Mumford, S. L., et al. (2019). Combining biomarker calibration data to reduce measurement error. Epidemiology, 30(Suppl 2), S3–S9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Calster, B., Wynants, L., Verbeek, J. F. M., et al. (2018). Reporting and interpreting decision curve analysis: A guide for investigators. European Urology, 74(6), 796–804.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tataranni, T., & Piccoli, C. (2019). Dichloroacetate (DCA) and cancer: An overview towards clinical applications. Oxidative Medicine and Cellular Longevity, 2019, 8201079.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Seguin, L., Durandy, M., & Feral, C. C. (2022). Lung adenocarcinoma tumor origin: A guide for personalized medicine. Cancers, 14(7), 1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zeng, X., Wang, H., He, D., et al. (2020). LIMD1 increases the sensitivity of lung adenocarcinoma cells to cisplatin via the GADD45α/p38 MAPK signaling pathway. Frontiers in Oncology, 10, 969.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Demers, M., Wong, S. L., Martinod, K., et al. (2016). Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology, 5(5), e1134073.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hakkim, A., Fuchs, T. A., Martinez, N. E., et al. (2011). Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nature Chemical Biology, 7(2), 75–77.

    Article  CAS  PubMed  Google Scholar 

  40. Shahzad, M. H., Feng, L., Su, X., et al. (2022). Neutrophil extracellular traps in cancer therapy resistance. Cancers, 14(5), 1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ham, I. H., Oh, H. J., Jin, H., et al. (2019). Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Molecular Cancer, 18(1), 68.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhai, J., Shen, J., Xie, G., et al. (2019). Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer. Cancer Letters, 454, 37–43.

    Article  CAS  PubMed  Google Scholar 

  43. Lee, H. G., Wheeler, M. A., & Quintana, F. J. (2022). Function and therapeutic value of astrocytes in neurological diseases Nature Reviews. Drug discovery, 21(5), 339–358.

    Article  CAS  PubMed  Google Scholar 

  44. Yang, Q., Xu, J., Gu, J., et al. (2022). Extracellular vesicles in cancer drug resistance: Roles, mechanisms, and implications. Advanced Science, 9(34), e2201609.

    Article  PubMed  Google Scholar 

  45. Zhu, H., Chen, K., Chen, Y., et al. (2022). RNA-binding protein ZCCHC4 promotes human cancer chemoresistance by disrupting DNA-damage-induced apoptosis. Signal Transduction and Targeted Therapy, 7(1), 240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Low, H. B., Wong, Z. L., Wu, B., et al. (2021). DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nature Communications, 12(1), 2284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takeuchi, S., Baghdadi, M., Tsuchikawa, T., et al. (2015). Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Research, 75(13), 2629–2640.

    Article  CAS  PubMed  Google Scholar 

  48. Wesolowski, R., Duggan, M. C., Stiff, A., et al. (2017). Circulating myeloid-derived suppressor cells increase in patients undergoing neo-adjuvant chemotherapy for breast cancer. Cancer Immunology, Immunotherapy : CII, 66(11), 1437–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Galluzzi, L., Humeau, J., Buqué, A., et al. (2020). Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nature Reviews. Clinical Oncology, 17(12), 725–741.

    Article  PubMed  Google Scholar 

  50. Trivieri, N., Pracella, R., Cariglia, M. G., et al. (2020). BRAFV600E mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies. Journal of Experimental & Clinical Cancer Research : CR, 39(1), 285.

    Article  CAS  PubMed Central  Google Scholar 

  51. Demaria, O., Cornen, S., Daëron, M., et al. (2019). Harnessing innate immunity in cancer therapy. Nature, 574(7776), 45–56.

    Article  CAS  PubMed  Google Scholar 

  52. Xia, L., Oyang, L., Lin, J., et al. (2021). The cancer metabolic reprogramming and immune response. Molecular Cancer, 20(1), 28.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Palmeri, M., Mehnert, J., Silk, A. W., et al. (2022). Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open, 7(1), 100336.

    Article  CAS  PubMed  Google Scholar 

  54. Pai, S. G., Carneiro, B. A., Chae, Y. K., et al. (2017). Correlation of tumor mutational burden and treatment outcomes in patients with colorectal cancer. Journal of Gastrointestinal Oncology, 8(5), 858–866.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Luo, J. H., Zhang, X. X., & Sun, W. H. (2022). F12 as a reliable diagnostic and prognostic biomarker associated with immune infiltration in papillary thyroid cancer. Aging, 14(8), 3687–3704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gazinska, P., Milton, C., Iacovacci, J., et al. (2022). Dynamic changes in the NK-, neutrophil-, and B-cell immunophenotypes relevant in high metastatic risk post neoadjuvant chemotherapy-resistant early breast cancers. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 28(20), 4494–4508.

    Article  CAS  PubMed  Google Scholar 

  57. Li, H., Luo, F., Jiang, X., et al. (2022). CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype. Journal for Immunotherapy of Cancer, 10(3), e004029.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shi, Q., Shen, Q., Liu, Y., et al. (2022). Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell, 40(10), 1207-1222.e10.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, J., Song, J., Tang, S., et al. (2023). Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Reports, 42(6), 112620.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to all the databases mentioned in the article for granting us permission to utilize their data.

Funding

This study was funded by the Shandong Provincial Medical and Health Science and Technology Development Plan Project (No.202203100054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingya Li.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, L., Wu, S., Xue, S. et al. A Novel Neutrophil Extracellular Trap Signature Predicts Patient Chemotherapy Resistance and Prognosis in Lung Adenocarcinoma. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01170-1

Keywords

Navigation