Skip to main content
Log in

Curcumin Inhibits the Progression of Non-small Cell Lung Cancer by Regulating DMRT3/SLC7A11 Axis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is a fatal malignancy all over the world. Emerging studies have shown that curcumin might repress NSCLC progression by regulating ferroptosis, but the underlying mechanism remains unclear. 16HBE, LK-2, and H1650 cell viability was detected using Cell Counting Kit-8 assay. LK-2 and H1650 cell proliferation, apoptosis, and angiopoiesis were measured using 5-ethynyl-2’-deoxyuridine, flow cytometry, and tube formation assay. Superoxide dismutase, Malondialdehyde, Glutathione, and lactate dehydrogenase levels in LK-2 and H1650 cells were examined using special assay kits. Fe+ level was assessed using an iron assay kit. Doublesex and Mab-3 related Transcription Factor 3 (DMRT3) and solute carrier family 7 member 11 (SLC7A11) protein levels were detected using western in NSCLC tissues, adjacent matched normal tissues, 16HBE cells, LK-2 cells, H1650 cells, and xenograft tumor tissues. Glutathione peroxidase 4, Acyl-CoA Synthetase Long Chain Family Member 4, and transferrin receptor 1 protein levels in LK-2 and H1650 cells were examined by western blot assay. DMRT3 and SLC7A11 levels were determined using real-time quantitative polymerase chain reaction. After JASPAR prediction, binding between DMRT3 and SLC7A11 promoter was verified using Chromatin immunoprecipitation and dual-luciferase reporter assays in LK-2 and H1650 cells. Role of curcumin on NSCLC tumor growth was assessed using the xenograft tumor model in vivo. Curcumin blocked NSCLC cell proliferation and angiopoiesis, and induced apoptosis and ferroptosis. DMRT3 or SLC7A11 upregulation partly abolished the suppressive role of curcumin on NSCLC development. In mechanism, DMRT3 was a transcription factor of SLC7A11 and increased the transcription of SLC7A11 via binding to its promoter region. Curcumin inhibited NSCLC growth in vivo by modulating DMRT3. Curcumin might constrain NSCLC cell malignant phenotypes partly through the DMRT3/SLC7A11 axis, providing a promising therapeutic strategy for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763

    Article  PubMed  Google Scholar 

  2. Leiter, A., Veluswamy, R. R., & Wisnivesky, J. P. (2023). The global burden of lung cancer: Current status and future trends. Nature Reviews. Clinical Oncology, 20(9), 624–639. https://doi.org/10.1038/s41571-023-00798-3

    Article  PubMed  Google Scholar 

  3. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  4. Rodak, O., Peris-Díaz, M. D., Olbromski, M., Podhorska-Okołów, M., & Dzięgiel, P. (2021). Current landscape of non-small cell lung cancer: epidemiology, histological classification, targeted therapies, and immunotherapy. Cancers (Basel). https://doi.org/10.3390/cancers13184705

    Article  PubMed  Google Scholar 

  5. Duma, N., Santana-Davila, R., & Molina, J. R. (2019). Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clinic Proceedings, 94(8), 1623–1640. https://doi.org/10.1016/j.mayocp.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  6. Reck, M., Heigener, D. F., Mok, T., Soria, J. C., & Rabe, K. F. (2013). Management of non-small-cell lung cancer: Recent developments. Lancet, 382(9893), 709–719. https://doi.org/10.1016/s0140-6736(13)61502-0

    Article  CAS  PubMed  Google Scholar 

  7. Imran, M., Ullah, A., Saeed, F., Nadeem, M., Arshad, M. U., & Suleria, H. A. R. (2018). Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Critical Reviews in Food Science and Nutrition, 58(8), 1271–1293. https://doi.org/10.1080/10408398.2016.1252711

    Article  CAS  PubMed  Google Scholar 

  8. Kotha, R. R., & Luthria, D. L. (2019). Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. https://doi.org/10.3390/molecules24162930

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kocaadam, B., & Şanlier, N. (2017). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13), 2889–2895. https://doi.org/10.1080/10408398.2015.1077195

    Article  CAS  PubMed  Google Scholar 

  10. Górnicka, J., Mika, M., Wróblewska, O., Siudem, P., & Paradowska, K. (2023). Methods to improve the solubility of curcumin from turmeric. Life (Basel). https://doi.org/10.3390/life13010207

    Article  PubMed  Google Scholar 

  11. Luis, P. B., Kunihiro, A. G., Funk, J. L., & Schneider, C. (2020). Incomplete hydrolysis of curcumin conjugates by β-glucuronidase: Detection of complex conjugates in plasma. Molecular Nutrition & Food Research, 64(6), e1901037. https://doi.org/10.1002/mnfr.201901037

    Article  CAS  Google Scholar 

  12. Wang, R., Han, J., Jiang, A., Huang, R., Fu, T., Wang, L., Zheng, Q., Li, W., & Li, J. (2019). Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. International Journal of Pharmaceutics. https://doi.org/10.1016/j.ijpharm.2019.02.027

    Article  PubMed  PubMed Central  Google Scholar 

  13. Soleimani, V., Sahebkar, A., & Hosseinzadeh, H. (2018). Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytotherapy Research, 32(6), 985–995. https://doi.org/10.1002/ptr.6054

    Article  CAS  PubMed  Google Scholar 

  14. Ming, T., Tao, Q., Tang, S., Zhao, H., Yang, H., Liu, M., Ren, S., & Xu, H. (2022). Curcumin: An epigenetic regulator and its application in cancer. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2022.113956

    Article  Google Scholar 

  15. Giordano, A., & Tommonaro, G. (2019). Curcumin and cancer. Nutrients. https://doi.org/10.3390/nu11102376

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mehta, H. J., Patel, V., & Sadikot, R. T. (2014). Curcumin and lung cancer—a review. Targeted Oncology, 9(4), 295–310. https://doi.org/10.1007/s11523-014-0321-1

    Article  PubMed  Google Scholar 

  17. Tang, X., Ding, H., Liang, M., Chen, X., Yan, Y., Wan, N., Chen, Q., Zhang, J., & Cao, J. (2021). Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thoracic Cancer, 12(8), 1219–1230. https://doi.org/10.1111/1759-7714.13904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang, C., Liu, J., Yang, C., Ma, J., Chen, X., Liu, D., Zhou, Y., Zhou, W., Lin, Y., & Yuan, X. (2022). Curcumin and its analogs in non-small cell lung cancer treatment: Challenges and expectations. Biomolecules. https://doi.org/10.3390/biom12111636

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, T., & Zarkower, D. (2017). DMRT proteins and coordination of mammalian spermatogenesis. Stem Cell Research. https://doi.org/10.1016/j.scr.2017.07.026

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, H. L., Zou, Z. C., Fang, C., Zheng, Y. P., Guo, X. M., & Yang, W. H. (2023). Mammalian DMRTs: Structure, function and relationship with cancer. Sheng Li Xue Bao, 75(2), 269–278.

    PubMed  Google Scholar 

  21. Bellefroid, E. J., Leclère, L., Saulnier, A., Keruzore, M., Sirakov, M., Vervoort, M., & De Clercq, S. (2013). Expanding roles for the evolutionarily conserved Dmrt sex transcriptional regulators during embryogenesis. Cellular and Molecular Life Sciences, 70(20), 3829–3845. https://doi.org/10.1007/s00018-013-1288-2

    Article  CAS  PubMed  Google Scholar 

  22. Kopp, A. (2012). Dmrt genes in the development and evolution of sexual dimorphism. Trends in Genetics, 28(4), 175–184. https://doi.org/10.1016/j.tig.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, D., Liu, M., Jiang, J., Luo, Y., Wang, Y., Chen, H., Li, D., Wang, D., Yang, Z., & Chen, H. (2022). Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma. Cancers (Basel). https://doi.org/10.3390/cancers14246220

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, S., Li, M., Ji, H., & Fang, Z. (2018). Landscape of transcriptional deregulation in lung cancer. BMC Genomics, 19(1), 435. https://doi.org/10.1186/s12864-018-4828-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, L., Chen, T., Zhang, X., Miao, Y., Tian, X., Yu, K., Xu, X., Niu, Y., Guo, S., Zhang, C., Qiu, S., Qiao, Y., Fang, W., Du, L., Yu, Y., & Wang, J. (2021). The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biology. https://doi.org/10.1016/j.redox.2020.101801

    Article  PubMed  PubMed Central  Google Scholar 

  26. He, F., Zhang, P., Liu, J., Wang, R., Kaufman, R. J., Yaden, B. C., & Karin, M. (2023). ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. Journal of Hepatology, 79(2), 362–377. https://doi.org/10.1016/j.jhep.2023.03.016

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, W., Sun, Y., Bai, L., Zhi, L., Yang, Y., Zhao, Q., Chen, C., Qi, Y., Gao, W., He, W., Wang, L., Chen, D., Fan, S., Chen, H., Piao, H. L., Qiao, Q., Xu, Z., Zhang, J., Zhao, J., … Wang, Y. (2021). RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. Journal of Clinical Investigation. https://doi.org/10.1172/jci152067

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shah, M., Murad, W., Mubin, S., Ullah, O., Rehman, N. U., & Rahman, M. H. (2022). Multiple health benefits of curcumin and its therapeutic potential. Environmental Science and Pollution Research International, 29(29), 43732–43744. https://doi.org/10.1007/s11356-022-20137-w

    Article  CAS  PubMed  Google Scholar 

  29. Ashrafizadeh, M., Najafi, M., Makvandi, P., Zarrabi, A., Farkhondeh, T., & Samarghandian, S. (2020). Versatile role of curcumin and its derivatives in lung cancer therapy. Journal of Cellular Physiology, 235(12), 9241–9268. https://doi.org/10.1002/jcp.29819

    Article  CAS  PubMed  Google Scholar 

  30. Salehi, M., Movahedpour, A., Tayarani, A., Shabaninejad, Z., Pourhanifeh, M. H., Mortezapour, E., Nickdasti, A., Mottaghi, R., Davoodabadi, A., Khan, H., Savardashtaki, A., & Mirzaei, H. (2020). Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytotherapy Research, 34(10), 2557–2576. https://doi.org/10.1002/ptr.6704

    Article  CAS  PubMed  Google Scholar 

  31. Tong, X., Tang, R., Xiao, M., Xu, J., Wang, W., Zhang, B., Liu, J., Yu, X., & Shi, S. (2022). Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. Journal of Hematology & Oncology, 15(1), 174. https://doi.org/10.1186/s13045-022-01392-3

    Article  Google Scholar 

  32. Strasser, A., & Vaux, D. L. (2020). Cell death in the origin and treatment of cancer. Molecular Cell, 78(6), 1045–1054. https://doi.org/10.1016/j.molcel.2020.05.014

    Article  CAS  PubMed  Google Scholar 

  33. Yan, H. F., Zou, T., Tuo, Q. Z., Xu, S., Li, H., Belaidi, A. A., & Lei, P. (2021). Ferroptosis: Mechanisms and links with diseases. Signal Transduction and Targeted Therapy, 6(1), 49. https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rochette, L., Dogon, G., Rigal, E., Zeller, M., Cottin, Y., & Vergely, C. (2022). Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms24010449

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zou, J., Wang, L., Tang, H., Liu, X., Peng, F., & Peng, C. (2021). Ferroptosis in non-small cell lung cancer: Progression and therapeutic potential on it. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms222413335

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu, X., Zhang, X., Zhang, Y., & Wang, Z. (2021). Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2021.111439

    Article  Google Scholar 

  37. Wang, J. Y., Wang, X., Wang, X. J., Zheng, B. Z., Wang, Y., Wang, X., & Liang, B. (2018). Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. European Review for Medical and Pharmacological Sciences, 22(21), 7492–7499. https://doi.org/10.26355/eurrev_201811_16290

    Article  PubMed  Google Scholar 

  38. Xu, X., & Zhu, Y. (2017). Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway. American Journal of Translational Research, 9(8), 3633–3641.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Katsuta, E., Huyser, M., Yan, L., & Takabe, K. (2021). A prognostic score based on long-term survivor unique transcriptomic signatures predicts patient survival in pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 11(9), 4294–4307.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Meng, Y., Li, S., Gu, D., Xu, K., Du, M., Zhu, L., Chu, H., Zhang, Z., Wu, Y., Fu, Z., & Wang, M. (2020). Genetic variants in m6A modification genes are associated with colorectal cancer risk. Carcinogenesis, 41(1), 8–17. https://doi.org/10.1093/carcin/bgz165

    Article  CAS  PubMed  Google Scholar 

  41. Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R., & Weirauch, M. T. (2018). The Human Transcription Factors. Cell, 172(4), 650–665. https://doi.org/10.1016/j.cell.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  42. Li, S., Lu, Z., Sun, R., Guo, S., Gao, F., Cao, B., & Aa, J. (2022). The role of SLC7A11 in Cancer: Friend or Foe? Cancers (Basel). https://doi.org/10.3390/cancers14133059

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lu, X., Kang, N., Ling, X., Pan, M., Du, W., & Gao, S. (2021). MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Frontiers in Oncology. https://doi.org/10.3389/fonc.2021.759346

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu, Y., Lv, D., Yan, C., Su, H., Zhang, X., Shi, Y., & Ying, K. (2022). METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell International, 22(1), 11. https://doi.org/10.1186/s12935-021-02433-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2024_1166_MOESM1_ESM.tif

Supplementary file1 (TIF 220 KB)—Figure S1 DMRT3 and SLC7A11 expression were detected in NSCLC cells. (A) RT-qPCR assay was used to measure DMRT3 mRNA level in LK-2 and H1650 cells treated with pcDNA, DMRT3, Curcumin + pcDNA, or Curcumin + DMRT3. (B) SLC7A11 mRNA level was assessed in LK-2 and H1650 cells treated with pcDNA, SLC7A11, Curcumin + pcDNA, or Curcumin + SLC7A11 using RT-qPCR assay. *P < 0.05

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Zhou, L. & Zhang, Q. Curcumin Inhibits the Progression of Non-small Cell Lung Cancer by Regulating DMRT3/SLC7A11 Axis. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01166-x

Keywords

Navigation