Skip to main content
Log in

METTL3 Promotes OSCC Progression by Down-Regulating WEE1 in a m6A-YTHDF2-Dependent Manner

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC) is a common and highly lethal epithelial cancer. This study aimed to confirm the role of METTL3 in promoting OSCC and investigate its specific underlying mechanisms. Expression of the METTL3, YTH domain-containing family 2 (YTHDF2), and WEE1 were examined in normal oral epithelial cells and OSCC cells. Cell functions were examined after overexpressing WEE1 in OSCC cells. MeRIP-qPCR analysis was used to detect WEE1 m6A levels in HOK, SCC25, and CAL27 cells. WEE1 and its m6A levels were evaluated in OSCC cells by knocking down METTL3/YTHDF2, assessing the interaction between METTL3/YTHDF2 and WEE1. The impact of METTL3 and YTHDF2 downregulation on WEE1 mRNA stability was also investigated. The tumor weight and volume in a nude mouse model of OSCC after overexpression of WEE1 and YTHDF2 were measured. Expression of Ki-67 and WEE1 in OSCC tissue was detected using immunohistochemistry. Compared to normal oral epithelial cells, METTL3 and YTHDF2 were upregulated in OSCC cells, while WEE1 was downregulated, and there was a negative correlation between WEE1 and METTL3/YTHDF2 expression. WEE1 overexpression inhibited proliferation, invasion, and migration while promoting apoptosis in OSCC cells. METTL3 and YTHDF2 bound to WEE1 mRNA. METTL3/YTHDF2 knockdown increased WEE1 levels and WEE1 mRNA stability. METTL3 inhibition reduced WEE1 m6A levels. Inhibition of METTL3 weakened the interaction between YTHDF2 and WEE1 mRNA. In vivo, overexpression of WEE1 suppressed OSCC development, which was reversed by overexpression of YTHDF2. METTL3 facilitates the progression of OSCC through m6A-YTHDF2-dependent downregulation of WEE1.

Graphic Abstract

METTL3 promotes OSCC progression by enhancing WEE1 mRNA degradation in a m6A-YTHDF2-dependent manner. METTL3 enhances the binding of cytoplasmic YTHDF2 to m6A modification sites on WEE1 mRNA, thereby promoting WEE1 mRNA degradation and facilitating OSCC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data underlying this article are available in the article. If needed, please contact the corresponding author.

References

  1. Chamoli, A., Gosavi, A. S., Shirwadkar, U. P., Wangdale, K. V., Behera, S. K., Kurrey, N. K., et al. (2021). Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncology, 121, 105451.

    Article  PubMed  Google Scholar 

  2. Krishna Rao, S. V., Mejia, G., Roberts-Thomson, K., & Logan, R. (2013). Epidemiology of oral cancer in Asia in the past decade—An update (2000–2012). Asian Pacific Journal of Cancer Prevention, 14, 5567–5577.

    Article  PubMed  Google Scholar 

  3. Wang, X., Tian, L., Li, Y., Wang, J., Yan, B., Yang, L., et al. (2021). RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent. Journal of Experimental and Clinical Cancer Research, 40, 80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fadlullah, M. Z., Chiang, I. K., Dionne, K. R., Yee, P. S., Gan, C. P., Sam, K. K., et al. (2016). Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies. Oncotarget, 7, 27802–27818.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Madhura, M. G., Rao, R. S., Patil, S., Fageeh, H. N., Alhazmi, A., & Awan, K. H. (2020). Advanced diagnostic aids for oral cancer. Disease-a-month, 66, 101034.

    Article  PubMed  Google Scholar 

  6. Chai, A. W. Y., Lim, K. P., & Cheong, S. C. (2020). Translational genomics and recent advances in oral squamous cell carcinoma. Seminars in Cancer Biology, 61, 71–83.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, X., Liu, Y., Sun, D., Sun, R., Wang, X., Li, M., et al. (2022). Long noncoding RNA lnc-H2AFV-1 promotes cell growth by regulating aberrant m6A RNA modification in head and neck squamous cell carcinoma. Cancer Science, 113, 2071–2084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng, X., Sun, X., Hu, Z., Wu, Y., Zhou, C., Sun, J., et al. (2023). Exploring the role of m6A methylation regulators in glioblastoma multiforme and their impact on the tumor immune microenvironment. The FASEB Journal, 37, e23155.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, W., Cui, Y., Liu, L., Ma, X., Qi, X., Wang, Y., et al. (2020). METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-Myc stability via YTHDF1-mediated m(6)A modification. Molecular Therapy Nucleic Acids., 20, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, L., Wu, Y., Li, Q., Liang, J., He, Q., Zhao, L., et al. (2020). METTL3 promotes tumorigenesis and metastasis through BMI1 m(6)A methylation in oral squamous cell carcinoma. Molecular Therapy, 28, 2177–2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, F., Yang, T., Yao, M., Shen, T., & Fang, C. (2021). HNRNPA2B1, as a m(6)A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma. Frontiers in Oncology, 11, 716921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dixit, D., Prager, B. C., Gimple, R. C., Poh, H. X., Wang, Y., Wu, Q., et al. (2021). The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discovery, 11, 480–499.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, K., Dai, X., & Yue, J. (2023). m(6)A methyltransferase KIAA1429 accelerates oral squamous cell carcinoma via regulating glycolysis and ferroptosis. Translational Oncology, 36, 101745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, F., Liao, Y., Zhang, M., Zhu, Y., Wang, W., Cai, H., et al. (2021). N6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma. Oncogene, 40, 3885–3898.

    Article  CAS  PubMed  Google Scholar 

  15. Fei, Q., Zou, Z., Roundtree, I. A., Sun, H. L., & He, C. (2020). YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biology, 18, e3000664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye, J., Wang, Z., Chen, X., Jiang, X., Dong, Z., Hu, S., et al. (2020). YTHDF1-enhanced iron metabolism depends on TFRC m(6)A methylation. Theranostics, 10, 12072–12089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, D. Q., Huang, C. C., Zhang, G., & Zhou, L. L. (2022). FTO demethylates YAP mRNA promoting oral squamous cell carcinoma tumorigenesis. Neoplasma, 69, 71–79.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, L., Shen, C., Pettit, C. J., Li, T., Hu, A. J., Miller, E. D., et al. (2020). Wee1 kinase inhibitor AZD1775 effectively sensitizes esophageal cancer to radiotherapy. Clinical Cancer Research, 26, 3740–3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matheson, C. J., Backos, D. S., & Reigan, P. (2016). Targeting WEE1 kinase in cancer. Trends in Pharmacological Sciences, 37, 872–881.

    Article  CAS  PubMed  Google Scholar 

  20. PosthumaDeBoer, J., Wurdinger, T., Graat, H. C., van Beusechem, V. W., Helder, M. N., van Royen, B. J., & Kaspers, G. J. (2011). WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer, 11, 156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masaki, T., Shiratori, Y., Rengifo, W., Igarashi, K., Yamagata, M., Kurokohchi, K., et al. (2003). Cyclins and cyclin-dependent kinases: Comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology, 37, 534–543.

    Article  CAS  PubMed  Google Scholar 

  22. Iorns, E., Lord, C. J., Grigoriadis, A., McDonald, S., Fenwick, K., Mackay, A., et al. (2009). Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS ONE, 4, e5120.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu, Y. H., Yu-Fong Chang, J., Chiang, C. P., & Wang, Y. P. (2022). Combined evaluation of both WEE1 and phosphorylated cyclin dependent kinase 1 expressions in oral squamous cell carcinomas predicts cancer recurrence and progression. Journal of Dental Science, 17, 1780–1787.

    Article  Google Scholar 

  24. Ma, L., Lin, Y., Sun, S. W., Xu, J., Yu, T., Chen, W. L., et al. (2022). KIAA1429 is a potential prognostic marker in colorectal cancer by promoting the proliferation via downregulating WEE1 expression in an m6A-independent manner. Oncogene, 41, 692–703.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, D., Tang, W., Xu, Y., Xu, Y., Xu, B., Fu, S., et al. (2021). METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5. Molecular Oncology, 15, 2172–2184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., et al. (2020). Publisher Correction: Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 22, 1288.

    Article  CAS  PubMed  Google Scholar 

  27. Deng, X., Su, R., Weng, H., Huang, H., Li, Z., & Chen, J. (2018). RNA N(6)-methyladenosine modification in cancers: Current status and perspectives. Cell Research, 28, 507–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, Y., Qiu, J. G., Jia, X. Y., Ke, Y., Zhang, M. K., Stieg, D., et al. (2023). METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance. Cancer Letters, 553, 215971.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, Y., Li, T., Wu, Y., Xu, H., Xie, C., Dong, Y., et al. (2020). GPR39 overexpression in OSCC promotes YAP-sustained malignant progression. Journal of Dental Research, 99, 949–958.

    Article  CAS  PubMed  Google Scholar 

  30. Mapperley, C., van de Lagemaat, L. N., Lawson, H., Tavosanis, A., Paris, J., Campos, J., et al. (2021). The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function. Journal of Experimental Medicine, 218, e20200829.

    Article  CAS  PubMed  Google Scholar 

  31. Luo, S., Liao, C., Zhang, L., Ling, C., Zhang, X., Xie, P., et al. (2023). METTL3-mediated m6A mRNA methylation regulates neutrophil activation through targeting TLR4 signaling. Cell Reports, 42, 112259.

    Article  CAS  PubMed  Google Scholar 

  32. Lindemann, A., Takahashi, H., Patel, A. A., Osman, A. A., & Myers, J. N. (2018). Targeting the DNA damage response in OSCC with TP53 mutations. Journal of Dental Research, 97, 635–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, J., Lu, J., Xu, M., Yang, S., Yu, T., & Zheng, C., et al. (2023). ODF2L acts as a synthetic lethal partner with WEE1 inhibition in epithelial ovarian cancer models. Journal of Clinical Investigation, 133.

  34. Li, M., Gao, F., Yu, X., Zhao, Q., Zhou, L., Liu, W., & Li, W. (2020). Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol-mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 39, 88.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith, H. L., Southgate, H., Tweddle, D. A., & Curtin, N. J. (2020). DNA damage checkpoint kinases in cancer. Expert Reviews in Molecular Medicine, 22, e2.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, Y., Hsu, P. J., Chen, Y. S., & Yang, Y. G. (2018). Dynamic transcriptomic m(6)A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Research, 28, 616–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, R., Li, Q., Feng, Z., Cai, L., & Xu, Q. (2019). m6A reader YTHDF2 regulates LPS-induced inflammatory response. International Journal of Molecular Science, 20, 1323.

    Article  CAS  Google Scholar 

  38. Deng, R., Cheng, Y., Ye, S., Zhang, J., Huang, R., Li, P., et al. (2019). m(6)A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Oncotargets and Therapy, 12, 4391–4402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, T., Sun, D., Xiong, W., Man, J., Zhang, Q., Zhao, M., & Zhang, Z. (2023). N(6)-methyladenosine plays a dual role in arsenic carcinogenesis by temporal-specific control of core target AKT1. Journal of Hazardous Materials, 445, 130468.

    Article  CAS  PubMed  Google Scholar 

  40. Miao, R., Dai, C. C., Mei, L., Xu, J., Sun, S. W., Xing, Y. L., et al. (2020). KIAA1429 regulates cell proliferation by targeting c-Jun messenger RNA directly in gastric cancer. Journal of Cellular Physiology, 235, 7420–7432.

    Article  CAS  PubMed  Google Scholar 

  41. Luo, H., Liu, W., Zhang, Y., Yang, Y., Jiang, X., Wu, S., & Shao, L. (2021). METTL3-mediated m(6)A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Research and Therapy, 12, 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, B., Lee, S., & Shim, J. (2021). YTHDF2 suppresses notch signaling through post-transcriptional regulation on Notch1. International Journal of Biological Sciences, 17, 3776–3785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S. R., & Qian, S. B. (2015). Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature, 526, 591–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, J., Xie, H., Ying, Y., Chen, H., Yan, H., He, L., et al. (2020). YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Molecular Cancer, 19, 152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Z., Zhou, K., Han, L., Small, A., Xue, J., Huang, H., et al. (2024). RNA m(6)A reader YTHDF2 facilitates precursor miR-126 maturation to promote acute myeloid leukemia progression. Genes Diseases, 11, 382–396.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxu Su.

Ethics declarations

Conflict of interest

The authors declare that there were no conflicts of interest. All authors agreed to submit the manuscript.

Ethic approval

All animal experiments were approved by the Experimental Animal Welfare Ethics Committee of Changsha Stomatological Hospital (No. LLBH-202311090030).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Hu, Y., Qu, B. et al. METTL3 Promotes OSCC Progression by Down-Regulating WEE1 in a m6A-YTHDF2-Dependent Manner. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01165-y

Keywords

Navigation