Skip to main content

Advertisement

Log in

Strategies of Bladder Reconstruction after Partial or Radical Cystectomy for Bladder Cancer

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The standard strategy is to reconstruct bladder by use of bowel segments as material in bladder cancer with radical cystectomy clinically. Both natural derived and non natural derived materials are investigated in bladder reconstruction. Studies on mechanical bladder, bladder transplantation and bladder xenotransplantation are currently limited although heart and kidney transplantation or xenotransplantation are successful to a certain extent, and bone prostheses are applied in clinical contexts. Earlier limited number of studies associated with bladder xenograft from animals to humans were not particular promising in results. Although there have been investigations on pig to human cardiac xenotransplantation with CRISPR Cas9 gene editing, the CRISPR Cas technique is not yet widely researched in porcine bladder related gene editing for the potential of human bladder replacement for bladder cancer. The advancement of technologies such as gene editing, bioprinting and induced pluripotent stem cells allow further research into partial or whole bladder replacement strategies. Porcine bladder is suggested as a potential source material for bladder reconstruction due to its alikeness to human bladder. Challenges that exist with all these approaches need to be overcome. This paper aims to review gene editing technology such as the CRISPR Cas systems as tools in bladder reconstruction, bladder xenotransplantation and hybrid bladder with technologies of induced pluripotent stem cells and genome editing, bioprinting for bladder replacement for bladder reconstruction and to restore normal bladder control function after cystectomy for bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Gregg, J. R., Dahm, P., & Chang, S. S. (2015). Guideline-based management of non-muscle invasive bladder cancer. Indian J Urol., 31(4), 320–326. https://doi.org/10.4103/0970-1591.163305

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Cancer Society. Bladder cancer risk factors. http://www.cancer.org/cancer/bladdercancer/detailedguide/bladder-cancer-riskfactors. Accessed May 20, 2016.

  3. Ou, Z., Li, K., Yang, T., Dai, Y., Chandra, M., Ning, J., Wang, Y., Xu, R., Gao, T., Xie, Y., He, Q., Li, Y., Lu, Q., Wang, L., & Song, Z. (2020). Detection of bladder cancer using urinary cell-free DNA and cellular DNA. Clinical and Translational Medicine, 9(1), 4. https://doi.org/10.1186/s40169-020-0257-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Timoteo, F., Korkes, F., Baccaglini, W., & Glina, S. (2020). Bladder cancer trends and mortality in the Brazilian public health system. International Brazilian Journal of Urology, 46(2), 224–233. https://doi.org/10.1590/S1677-5538.IBJU.2019.0198

    Article  PubMed  PubMed Central  Google Scholar 

  5. Witjes, J. A., Bruins, H. M., Cathomas, R., Compérat, E. M., Cowan, N. C., Gakis, G., Hernández, V., Linares Espinós, E., Lorch, A., Neuzillet, Y., Rouanne, M., Thalmann, G. N., Veskimäe, E., Ribal, M. J., & van der Heijden, A. G. (2021). European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. European Urology, 79(1), 82–104. https://doi.org/10.1016/j.eururo.2020.03.055. Epub 2020 Apr 29.

    Article  CAS  PubMed  Google Scholar 

  6. Lenis, A. T., Lec, P. M., Chamie, K., & Mshs, M. D. (2020). Bladder cancer: A review. JAMA, 324(19), 1980–1991. https://doi.org/10.1001/jama.2020.17598

    Article  CAS  PubMed  Google Scholar 

  7. Burch, J. (2013). When to use a barrier cream in patients with a stoma. The British Journal of Nursing, 22(5), S12. https://doi.org/10.12968/bjon.2013.22.sup3.s12

    Article  Google Scholar 

  8. Bahlburg, H., Hellmann, T., Tully, K., Butea-Bocu, M. C., Reike, M., Roghmann, F., Noldus, J., & Müller, G. (2023). Psychosocial distress and quality of life in patients after radical cystectomy—one year follow-up in 842 German patients. Journal of Cancer Survivorship. https://doi.org/10.1007/s11764-023-01400-6. Epub ahead of print.

    Article  PubMed  Google Scholar 

  9. Pane, S., Mazzocchi, T., Iacovacci, V., Ricotti, L., & Menciassi, A. (2021). Smart implantable artificial bladder: An integrated design for organ replacement. IEEE Transactions on Biomedical Engineering, 68(7), 2088–2097. https://doi.org/10.1109/TBME.2020.3023052. Epub 2021 Jun 17.

    Article  PubMed  Google Scholar 

  10. El-Taji, O. M., Khattak, A. Q., & Hussain, S. A. (2015). Bladder reconstruction: the past, present and future. Oncology Letters, 10(1), 3–10. https://doi.org/10.3892/ol.2015.3161.ildrim

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Groat, W. C., Griffiths, D., & Yoshimura, N. (2015). Neural control of the lower urinary tract. Comprehensive Physiology, 5, 327–396.

    PubMed  PubMed Central  Google Scholar 

  12. Malysz, J., & Petkov, G. V. (2020). Urinary bladder smooth muscle ion channels: Expression, function, and regulation in health and disease. American Journal of Physiology. Renal Physiology, 319(2), F257–F283. https://doi.org/10.1152/ajprenal.00048.2020. Epub 2020 Jul 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jafari, N. V., & Rohn, J. L. (2022). The urothelium: A multi-faceted barrier against a harsh environment. Mucosal Immunology, 15(6), 1127–1142. https://doi.org/10.1038/s41385-022-00565-0. Epub 2022 Sep 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, W., Wilhelmina Aalders, T., & Oosterwijk, E. (2014). Identification of potential bladder progenitor cells in the trigone. Developmental Biology, 393(1), 84–92. https://doi.org/10.1016/j.ydbio.2014.06.018. Epub 2014 Jun 30.

    Article  CAS  PubMed  Google Scholar 

  15. Birder, L. (2004). Role of the urothelium in bladder function. Scandinavian Journal of Urology and Nephrology. Supplementum, 215, 48–53. https://doi.org/10.1080/03008880410015165

    Article  Google Scholar 

  16. Andersson, K. E., & McCloskey, K. D. (2014). Lamina propria: The functional center of the bladder. Neurourology and Urodynamics, 33, 9–16. https://doi.org/10.1002/nau.22465

    Article  PubMed  Google Scholar 

  17. Osborn, S. L., & Kurzrock, E. A. (2015). Production of urothelium from pluripotent stem cells for regenerative applications. Current Urology Reports, 16(1), 466. https://doi.org/10.1007/s11934-014-0466-6

    Article  PubMed  Google Scholar 

  18. Fry, C. H., Sui, G. P., Kanai, A. J., & Wu, C. (2007). The function of suburothelial myofibroblasts in the bladder. Neurourology and Urodynamics, 26(6 Suppl), 914–919. https://doi.org/10.1002/nau.20483

    Article  CAS  PubMed  Google Scholar 

  19. Andersson, K. E., & Arner, A. (2004). Urinary bladder contraction and relaxation: Physiology and pathophysiology. Physiological Reviews, 84(3), 935–986. https://doi.org/10.1152/physrev.00038.2003

    Article  CAS  PubMed  Google Scholar 

  20. Griffiths, D. J. (2004). Cerebral control of bladder function. Current Urology Reports, 5(5), 348–352. https://doi.org/10.1007/s11934-004-0081-z

    Article  PubMed  Google Scholar 

  21. Marshall, K. L., Saade, D., Ghitani, N., Coombs, A. M., Szczot, M., Keller, J., Ogata, T., Daou, I., Stowers, L. T., Bönnemann, C. G., Chesler, A. T., & Patapoutian, A. (2020). PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature, 588(7837), 290–295. https://doi.org/10.1038/s41586-020-2830-7. Epub 2020 Oct 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clemens, J. Q. (2010). Basic bladder neurophysiology. Urologic Clinics of North America, 37(4), 487–494. https://doi.org/10.1016/j.ucl.2010.06.006

    Article  PubMed  Google Scholar 

  23. de Groat, W. C. (2006). Integrative control of the lower urinary tract: preclinical perspective. British Journal of Pharmacology, 147(Suppl 2), S25–S40. https://doi.org/10.1038/sj.bjp.0706604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Groat, W. C., & Wickens, C. (2013). Organization of the neural switching circuitry underlying reflex micturition. Acta Psychologica, 207(1), 66–84. https://doi.org/10.1111/apha.12014. Epub 2012 Oct 24.

    Article  CAS  Google Scholar 

  25. Fowler, C. J., Griffiths, D., & de Groat, W. C. (2008). The neural control of micturition. Nature Reviews Neuroscience, 9(6), 453–466. https://doi.org/10.1038/nrn2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hardy, C. C., & Korstanje, R. (2023). Aging and urinary control: Alterations in the brain-bladder axis. Aging Cell, 22(12), e13990. https://doi.org/10.1111/acel.13990. Epub 2023 Sep 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bolland, F., & Southgate, J. (2008). Bio-engineering urothelial cells for bladder tissue transplant. Expert Opinion on Biological Therapy, 8(8), 1039–1049. https://doi.org/10.1517/14712598.8.8.1039

    Article  CAS  PubMed  Google Scholar 

  28. Pattison, M. A., Wurster, S., Webster, T. J., & Haberstroh, K. M. (2005). Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials, 26(15), 2491–2500. https://doi.org/10.1016/j.biomaterials.2004.07.011

    Article  CAS  PubMed  Google Scholar 

  29. Iimori, Y., Iwai, R., Nagatani, K., Inoue, Y., Funayama-Iwai, M., Okamoto, M., Nakata, M., Mie, K., Nishida, H., Nakayama, Y., & Akiyoshi, H. (2020). Urinary bladder reconstruction using autologous collagenous connective tissue membrane “Biosheet®” induced by in-body tissue architecture: A pilot study. Regenerative Therapy, 15, 274–280. https://doi.org/10.1016/j.reth.2020.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu, D. S., Lee, C. F., Chen, H. I., & Chang, S. Y. (2007). Bladder wall grafting in rats using salt-modified and collagen-coated polycaprolactone scaffolds: Preliminary report. International Journal of Urology, 14(10), 939–944. https://doi.org/10.1111/j.1442-2042.2007.01871.x

    Article  PubMed  Google Scholar 

  31. Talab, S. S., Kajbafzadeh, A. M., Elmi, A., Tourchi, A., Sabetkish, S., Sabetkish, N., & Monajemzadeh, M. (2014). Bladder reconstruction using scaffold-less autologous smooth muscle cell sheet engineering: Early histological outcomes for autoaugmentation cystoplasty. BJU International, 114(6), 937–945. https://doi.org/10.1111/bju.12685. Epub 2014 Aug 16.

    Article  CAS  PubMed  Google Scholar 

  32. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367(9518), 1241–1246. https://doi.org/10.1016/S0140-6736(06)68438-9

    Article  PubMed  Google Scholar 

  33. Stanasel, I., Mirzazadeh, M., & Smith, J. J., 3rd. (2010). Bladder tissue engineering. Urologic Clinics of North America, 37(4), 593–599. https://doi.org/10.1016/j.ucl.2010.06.008. Epub 2010 Aug 11.

    Article  PubMed  Google Scholar 

  34. Garriboli, M., Deguchi, K., Totonelli, G., Georgiades, F., Urbani, L., Ghionzoli, M., Burns, A. J., Sebire, N. J., Turmaine, M., Eaton, S., & De Coppi, P. (2022). Development of a porcine acellular bladder matrix for tissue-engineered bladder reconstruction. Pediatric Surgery International, 38(5), 665–677. https://doi.org/10.1007/s00383-022-05094-2. Epub 2022 Mar 22.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Davis, N. F., & Callanan, A. (2021). Production and preparation of porcine urinary bladder matrix (UBM) for urinary bladder tissue-engineering purposes. Advances in Experimental Medicine and Biology, 1345, 119–128. https://doi.org/10.1007/978-3-030-82735-9_10

    Article  CAS  PubMed  Google Scholar 

  36. Bolland, F., Korossis, S., Wilshaw, S. P., Ingham, E., Fisher, J., Kearney, J. N., & Southgate, J. (2007). Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials, 28(6), 1061–1070. https://doi.org/10.1016/j.biomaterials.2006.10.005. Epub 2006 Nov 7.

    Article  CAS  PubMed  Google Scholar 

  37. Rosario, D. J., Reilly, G. C., Ali Salah, E., Glover, M., Bullock, A. J., & Macneil, S. (2008). Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regenerative Medicine, 3(2), 145–156. https://doi.org/10.2217/17460751.3.2.145

    Article  CAS  PubMed  Google Scholar 

  38. Mitsui, Y., Shiina, H., Hiraoka, T., Arichi, N., Yasumoto, H., Dahiya, R., Tanagho, E. A., & Igawa, M. (2012). Simultaneous implantation of bilateral ureters into bladder acellular matrix graft after partial cystectomy in a porcine model. BJU International, 110(11), E1212–E1217. https://doi.org/10.1111/j.1464-410X.2012.11553.x. Epub 2012 Oct 9.

    Article  PubMed  Google Scholar 

  39. Pokrywczynska, M., Jundzill, A., Tworkiewicz, J., Buhl, M., Balcerczyk, D., Adamowicz, J., Kloskowski, T., Rasmus, M., Mecinska-Jundzill, K., Kasinski, D., Frontczak-Baniewicz, M., Holysz, M., Skopinska-Wisniewska, J., Bodnar, M., Marszalek, A., Antosik, P., Grzanka, D., & Drewa, T. (2022). Urinary bladder augmentation with acellular biologic scaffold-A preclinical study in a large animal model. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 110(2), 438–449. https://doi.org/10.1002/jbm.b.34920. Epub 2021 Jul 29.

    Article  CAS  PubMed  Google Scholar 

  40. Zupančič, D., Mrak Poljšak, K., & Kreft, M. E. (2018). Co-culturing porcine normal urothelial cells, urinary bladder fibroblasts and smooth muscle cells for tissue engineering research. Cell Biology International, 42(4), 411–424. https://doi.org/10.1002/cbin.10910. Epub 2017 Nov 27.

    Article  CAS  PubMed  Google Scholar 

  41. Sabetkish, S., Sabetkish, N., & Kajbafzadeh, A. M. (2020). In-vivo regeneration of bladder muscular wall with whole decellularized bladder matrix: A novel hourglass technique for duplication of bladder volume in rabbit model. Journal of Pediatric Surgery, 55(10), 2226–2232. https://doi.org/10.1016/j.jpedsurg.2019.11.020. Epub 2019 Dec 27.

    Article  PubMed  Google Scholar 

  42. Piechota, H. J., Dahms, S. E., Probst, M., Gleason, C. A., Nunes, L. S., Dahiya, R., Lue, T. F., & Tanagho, E. A. (1998). Functional rat bladder regeneration through xenotransplantation of the bladder acellular matrix graft. British Journal of Urology, 81(4), 548–559. https://doi.org/10.1046/j.1464-410x.1998.00608.x

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, W. D., Xu, Y. M., Feng, C., Fu, Q., & Song, L. J. (2011). Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model. Urologe A., 50(11), 1420–1425. https://doi.org/10.1007/s00120-011-2627-2

    Article  PubMed  Google Scholar 

  44. Zhou, L., Xia, J., Wang, P., Jia, R., Zheng, J., Yao, X., Chen, Y., Dai, Y., & Yang, B. (2018). Autologous smooth muscle progenitor cells enhance regeneration of tissue-engineered bladder. Tissue Engineering Part A, 24(13–14), 1066–1081. https://doi.org/10.1089/ten.TEA.2017.0376. Epub 2018 Mar 1.

    Article  CAS  PubMed  Google Scholar 

  45. Vishwakarma, S. K., Sarwar, S., Adil, M. A. M., & Khan, A. A. (2020). Biofabrication of cell-laden allografts of goat urinary bladder scaffold for organ reconstruction/regeneration. Tissue and Cell, 67, 101443. https://doi.org/10.1016/j.tice.2020.101443. Epub 2020 Sep 28.

    Article  CAS  PubMed  Google Scholar 

  46. Atala, A. (2011). Tissue engineering of human bladder. British Medical Bulletin, 97, 81–104. https://doi.org/10.1093/bmb/ldr003. Epub 2011 Feb 15.

    Article  PubMed  Google Scholar 

  47. Bury, M. I., Fuller, N. J., Sturm, R. M., Rabizadeh, R. R., Nolan, B. G., Barac, M., Edassery, S. S., Chan, Y. Y., & Sharma, A. K. (2021). The effects of bone marrow stem and progenitor cell seeding on urinary bladder tissue regeneration. Science and Reports, 11(1), 2322. https://doi.org/10.1038/s41598-021-81939-5

    Article  CAS  Google Scholar 

  48. Smolar, J., Horst, M., Salemi, S., & Eberli, D. (2020). Predifferentiated smooth muscle-like adipose-derived stem cells for bladder engineering. Tissue Engineering Part A, 26(17–18), 979–992. https://doi.org/10.1089/ten.TEA.2019.0216. Epub 2020 May 21.

    Article  CAS  PubMed  Google Scholar 

  49. Kanematsu, A., Yamamoto, S., Iwai-Kanai, E., Kanatani, I., Imamura, M., Adam, R. M., Tabata, Y., & Ogawa, O. (2005). Induction of smooth muscle cell-like phenotype in marrow-derived cells among regenerating urinary bladder smooth muscle cells. American Journal of Pathology, 166(2), 565–573. https://doi.org/10.1016/S0002-9440(10)62278-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tian, H., Bharadwaj, S., Liu, Y., Ma, P. X., Atala, A., & Zhang, Y. (2010). Differentiation of human bone marrow mesenchymal stem cells into bladder cells: Potential for urological tissue engineering. Tissue Engineering Part A, 16(5), 1769–1779. https://doi.org/10.1089/ten.TEA.2009.0625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ning, J., Li, C., Li, H., & Chang, J. (2011). Bone marrow mesenchymal stem cells differentiate into urothelial cells and the implications for reconstructing urinary bladder mucosa. Cytotechnology, 63(5), 531–539. https://doi.org/10.1007/s10616-011-9376-3. Epub 2011 Sep 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bouhout, S., Chabaud, S., & Bolduc, S. (2019). Collagen hollow structure for bladder tissue engineering. Materials Science & Engineering, C: Materials for Biological Applications, 102, 228–237. https://doi.org/10.1016/j.msec.2019.04.052. Epub 2019 Apr 17.

    Article  CAS  Google Scholar 

  53. Liao, W., Yang, S., Song, C., Li, X., Li, Y., & Xiong, Y. (2013). Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix. Transplantation Proceedings, 45(2), 730–734. https://doi.org/10.1016/j.transproceed.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  54. Anumanthan, G., Makari, J. H., Honea, L., Thomas, J. C., Wills, M. L., Bhowmick, N. A., Adams, M. C., Hayward, S. W., Matusik, R. J., Brock, J. W., 3rd., & Pope, J. C., 4th. (2008). Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. Journal of Urology, 180(4 Suppl), 1778–1783. https://doi.org/10.1016/j.juro.2008.04.076. Epub 2008 Aug 21.

    Article  CAS  PubMed  Google Scholar 

  55. Oottamasathien, S., Wang, Y., Williams, K., Franco, O. E., Wills, M. L., Thomas, J. C., Saba, K., Sharif-Afshar, A. R., Makari, J. H., Bhowmick, N. A., DeMarco, R. T., Hipkens, S., Magnuson, M., Brock, J. W., 3rd., Hayward, S. W., Pope, J. C., 4th., & Matusik, R. J. (2007). Directed differentiation of embryonic stem cells into bladder tissue. Developmental Biology, 304(2), 556–566. https://doi.org/10.1016/j.ydbio.2007.01.010. Epub 2007 Jan 12.

    Article  CAS  PubMed  Google Scholar 

  56. Frimberger, D., Morales, N., Shamblott, M., Gearhart, J. D., Gearhart, J. P., & Lakshmanan, Y. (2005). Human embryoid body-derived stem cells in bladder regeneration using rodent model. Urology, 65(4), 827–832. https://doi.org/10.1016/j.urology.2004.11.024

    Article  PubMed  Google Scholar 

  57. Lakshmanan, Y., Frimberger, D., Gearhart, J. D., & Gearhart, J. P. (2005). Human embryoid body-derived stem cells in co-culture with bladder smooth muscle and urothelium. Urology, 65(4), 821–826. https://doi.org/10.1016/j.urology.2004.11.022

    Article  PubMed  Google Scholar 

  58. Denker, H. W. (2006). Potentiality of embryonic stem cells: An ethical problem even with alternative stem cell sources. Journal of Medical Ethics, 32(11), 665–671. https://doi.org/10.1136/jme.2005.014738.Erratum.In:JMedEthics.2007;33(2):93

    Article  PubMed  PubMed Central  Google Scholar 

  59. Drewa, T., Joachimiak, R., Kaznica, A., Sarafian, V., & Pokrywczynska, M. (2009). Hair stem cells for bladder regeneration in rats: Preliminary results. Transplantation Proceedings, 41(10), 4345–4351. https://doi.org/10.1016/j.transproceed.2009.08.059

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024. Epub 2006 Aug 10.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, H., & Ding, S. (2010). Evolution of induced pluripotent stem cell technology. Current Opinion in Hematology, 17(4), 276–280. https://doi.org/10.1097/MOH.0b013e328339f2ee

    Article  PubMed  Google Scholar 

  62. Osborn, S. L., Thangappan, R., Luria, A., Lee, J. H., Nolta, J., & Kurzrock, E. A. (2014). Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Translational Medicine, 3(5), 610–619. https://doi.org/10.5966/sctm.2013-0131. Epub 2014 Mar 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, Z., Wen, Y., Li, Y. H., Wei, Y., Green, M., Wani, P., Zhang, P., Pera, R. R., & Chen, B. (2016). Smooth muscle precursor cells derived from human pluripotent stem cells for treatment of stress urinary incontinence. Stem Cells Dev., 25(6), 453–461. https://doi.org/10.1089/scd.2015.0343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, Y., Wen, Y., Wang, Z., Wei, Y., Wani, P., Green, M., Swaminathan, G., Ramamurthi, A., Pera, R. R., & Chen, B. (2016). Smooth muscle progenitor cells derived from human pluripotent stem cells induce histologic changes in injured urethral sphincter. Stem Cells Translational Medicine, 5(12), 1719–1729. https://doi.org/10.5966/sctm.2016-0035. Epub 2016 Jul 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Suzuki, K., Koyanagi-Aoi, M., Uehara, K., Hinata, N., Fujisawa, M., & Aoi, T. (2019). Directed differentiation of human induced pluripotent stem cells into mature stratified bladder urothelium. Science and Reports, 9(1), 10506. https://doi.org/10.1038/s41598-019-46848-8

    Article  CAS  Google Scholar 

  66. Yilmaz, B., Tahmasebifar, A., & Baran, E. T. (2020). Bioprinting technologies in tissue engineering. Advances in Biochemical Engineering/Biotechnology, 171, 279–319. https://doi.org/10.1007/10_2019_108

    Article  CAS  PubMed  Google Scholar 

  67. Xu, K., Han, Y., Huang, Y., Wei, P., Yin, J., & Jiang, J. (2022). The application of 3D bioprinting in urological diseases. Mater Today Bio., 16, 100388. https://doi.org/10.1016/j.mtbio.2022.100388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chae, S., Kim, J., Yi, H. G., & Cho, D. W. (2022). 3D Bioprinting of an in vitro model of a biomimetic urinary bladder with a contract-release system. Micromachines (Basel)., 13(2), 277. https://doi.org/10.3390/mi13020277

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kim, J. H., Lee, S., Kang, S. J., Choi, Y. W., Choi, S. Y., Park, J. Y., & Chang, I. H. (2021). Establishment of three-dimensional bioprinted bladder cancer-on-a-chip with a microfluidic system using bacillus Calmette-Guérin. International Journal of Molecular Sciences, 22(16), 8887. https://doi.org/10.3390/ijms22168887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Waldbillig, F., von Rohr, L., Nientiedt, M., Grüne, B., Hein, S., Suarez-Ibarrola, R., Miernik, A., Ritter, M., & Kriegmair, M. C. (2021). Endourological training using 3D-printed bladder phantoms: Development and prospective evaluation. Journal of Endourology, 35(8), 1257–1264. https://doi.org/10.1089/end.2020.0900. Epub 2021 Mar 9.

    Article  PubMed  Google Scholar 

  71. Pi, Q., Maharjan, S., Yan, X., Liu, X., Singh, B., van Genderen, A. M., Robledo-Padilla, F., Parra-Saldivar, R., Hu, N., Jia, W., Xu, C., Kang, J., Hassan, S., Cheng, H., Hou, X., Khademhosseini, A., & Zhang, Y. S. (2018). Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Advanced Materials, 30(43), e1706913. https://doi.org/10.1002/adma.201706913. Epub 2018 Aug 23.

    Article  CAS  PubMed  Google Scholar 

  72. Bour, R. K., Sharma, P. R., Turner, J. S., Hess, W. E., Mintz, E. L., Latvis, C. R., Shepherd, B. R., Presnell, S. C., McConnell, M. J., Highley, C., Peirce, S. M., & Christ, G. J. (2020). Bioprinting on sheet-based scaffolds applied to the creation of implantable tissue-engineered constructs with potentially diverse clinical applications: Tissue-Engineered Muscle Repair (TEMR) as a representative testbed. Connective Tissue Research, 61(2), 216–228. https://doi.org/10.1080/03008207.2019.1679800. Epub 2020 Jan 3.

    Article  CAS  PubMed  Google Scholar 

  73. Ward, A., Morgante, D., Fisher, J., Ingham, E., & Southgate, J. (2021). Translation of mechanical strain to a scalable biomanufacturing process for acellular matrix production from full thickness porcine bladders. Biomedical Materials. https://doi.org/10.1088/1748-605X/ac2ab8

    Article  PubMed  Google Scholar 

  74. Hume, D. M., Merrill, J. P., Miller, B. F., & Thorn, G. W. (1955). Experiences with renal homotransplantation in the human: Report of nine cases. The Journal of Clinical Investigation, 34, 327–382. https://doi.org/10.1172/JCI103085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murray, G. (1962). The trend in medicine. American Journal of Surgery, 103, 155–156. https://doi.org/10.1016/0002-9610(62)90478-6

    Article  CAS  PubMed  Google Scholar 

  76. Vincenti, F., Rostaing, L., Grinyo, J., Rice, K., Steinberg, S., Gaite, L., Moal, M. C., Mondragon-Ramirez, G. A., Kothari, J., Polinsky, M. S., Meier-Kriesche, H. U., Munier, S., & Larsen, C. P. (2016). Belatacept and long-term outcomes in kidney transplantation. New England Journal of Medicine, 374(4), 333–343. https://doi.org/10.1056/NEJMoa1506027. Erratum in: N Engl J Med. 2016 Feb 18;374(7):698.

    Article  CAS  PubMed  Google Scholar 

  77. Wang, C., Cordoba, S., Hu, M., Bertolino, P., Bowen, D. G., Sharland, A. F., Allen, R. D., Alexander, S. I., McCaughan, G. W., & Bishop, G. A. (2011). Spontaneous acceptance of mouse kidney allografts is associated with increased Foxp3 expression and differences in the B and T cell compartments. Transplant Immunology, 24(3), 149–156. https://doi.org/10.1016/j.trim.2010.12.004. Epub 2011 Jan 1.

    Article  CAS  PubMed  Google Scholar 

  78. Tanaka, S. T., Thangappan, R., Eandi, J. A., Leung, K. N., & Kurzrock, E. A. (2010). Bladder wall transplantation–long-term survival of cells: Implications for bioengineering and clinical application. Tissue Engineering Part A, 16(6), 2121–2127. https://doi.org/10.1089/ten.TEA.2009.0557

    Article  CAS  PubMed  Google Scholar 

  79. Rocha, J. N. (2017). Cystometric analysis of the transplanted bladder. International Braz J Urol, 43(1), 112–120. https://doi.org/10.1590/S1677-5538.IBJU.2015.0117

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang, J., Wu, J., Moris, D., Hayes, B., Abraham, S. N., & Cendales, L. C. (2020). Introducing a novel experimental model of bladder transplantation in mice. American Journal of Transplantation, 20(12), 3558–3566. https://doi.org/10.1111/ajt.15912

    Article  PubMed  Google Scholar 

  81. Jundziłł, A., Witmanowski, H., Żary-Sikorska, E., Adamowicz, J., Bodnar, M., Marszałek, A., Kloskowski, T., Męcińska-Jundziłł, K., Gagat, M., Siedlecka, N., Drewa, T., & Pokrywczyńska, M. (2021). A new heterotropic vascularized model of total urinary bladder transplantation in a rat model. Science and Reports, 11(1), 3775. https://doi.org/10.1038/s41598-021-83128-w

    Article  CAS  Google Scholar 

  82. Yamataka, A., Wang, K., Kobayashi, H., Lane, G., Miyahara, K., Sueyoshi, N., & Miyano, T. (2001). Bladder transplantation in rats using FK-506. Journal of Urology, 166(1), 259–262.

    Article  CAS  PubMed  Google Scholar 

  83. Sawada, H., Esaki, M., Sheng, H. M., Kita, A., & Yoshida, T. (2004). Transplantation of the urinary bladder and other organs in the subcutaneous tissue induces cyst formation and epithelialization: Its potential usefulness in regenerative medicine. Wound Repair Regen, 12(1), 30–37. https://doi.org/10.1111/j.1067-1927.2004.012108.x

    Article  PubMed  Google Scholar 

  84. Romero Peŕez, P., Lobato Encinas, J., Megía Carrigos, J., Gasso Matoses, M., Pérez Llorca, L. A., Pelluch Auladell, A., & Mira Llinares, A. (1990). Cistectomía parcial parietal y cistoplastia con parche de duramadre humana liofilizada como alternativa en cirugía oncológica vesical paliativa [Partial parietal cystectomy and cystoplasty using a lyophilized human dura mater patch as an alternative in palliative surgery for bladder cancer]. Archivos Españoles de Urología, 43(8), 867–875.

    PubMed  Google Scholar 

  85. Gutierrez Calzada, J. L., Martinez, J. L., Baena, V., Laguna, G., Arrieta, J., Rodriguez, J., & Moncada, A. (1987). En bloc kidney and bladder transplantation from an anencephalic donor into an adult recipient. Journal of Urology, 138(1), 125–126. https://doi.org/10.1016/s0022-5347(17)43017-5

    Article  CAS  PubMed  Google Scholar 

  86. Kato, T., Selvaggi, G., Burke, G., Ciancio, G., Zilleruelo, G., Hattori, M., Gosalbez, R., & Tzakis, A. (2008). Partial bladder transplantation with en bloc kidney transplant–the first case report of a “bladder patch technique” in a human. American Journal of Transplantation, 8(5), 1060–1063. https://doi.org/10.1111/j.1600-6143.2008.02180.x. Epub 2008 Feb 29.

    Article  CAS  PubMed  Google Scholar 

  87. Ciancio, G., Kato, T., Chen, L., Sageshima, J., Livingstone, A. S., & Burke, G. W. (2009). Transplantation of en bloc pediatric kidneys with a partial bladder segment in an adult recipient. Transplant International, 22(3), 350–353. https://doi.org/10.1111/j.1432-2277.2008.00815.x

    Article  PubMed  Google Scholar 

  88. Dogan, M., Tugmen, C., Kebapci, E., Yildirim, U., Karaca, C., Alparslan, C., Yavascan, O., & Aksu, N. (2011). En-bloc pediatric kidney transplantation together with a partial bladder segment: A case report. Pediatric Nephrology(Berlin, Germany), 26(5), 805–807. https://doi.org/10.1007/s00467-010-1743-3. Epub 2011 Jan 7.

    Article  PubMed  Google Scholar 

  89. Sachs, D. H. (1994). The pig as a potential xenograft donor. Veterinary Immunology and Immunopathology, 43(1–3), 185–191. https://doi.org/10.1016/0165-2427(94)90135-x

    Article  CAS  PubMed  Google Scholar 

  90. Turner, A. M., Subramaniam, R., Thomas, D. F. M., & Southgate, J. (2008). Generation of a functional, differentiated porcine urothelial tissue in vitro. European Urology, 54, 1423–1432.

    Article  PubMed  Google Scholar 

  91. Phelps, C. J., Koike, C., Vaught, T. D., Boone, J., Wells, K. D., Chen, S. H., Ball, S., Specht, S. M., Polejaeva, I. A., Monahan, J. A., Jobst, P. M., Sharma, S. B., Lamborn, A. E., Garst, A. S., Moore, M., Demetris, A. J., Rudert, W. A., Bottino, R., Bertera, S., … Ayares, D. L. (2003). Production of alpha 1,3-galactosyltransferase-deficient pigs. Science, 299(5605), 411–414. https://doi.org/10.1126/science.1078942. Epub 2002 Dec 19.

    Article  CAS  PubMed  Google Scholar 

  92. Petersen, B., Carnwath, J. W., & Niemann, H. (2009). The perspectives for porcine-to-human xenografts. Comparative Immunology, Microbiology and Infectious Diseases, 32(2), 91–105. https://doi.org/10.1016/j.cimid.2007.11.014. Epub 2008 Feb 15.

    Article  PubMed  Google Scholar 

  93. Ladowski, J. M., Houp, J., Hauptfeld-Dolejsek, V., Javed, M., Hara, H., & Cooper, D. K. C. (2021). Aspects of histocompatibility testing in xenotransplantation. Transplant Immunology, 67, 101409. https://doi.org/10.1016/j.trim.2021.101409. Epub 2021 May 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stehlik, J., Edwards, L. B., Kucheryavaya, A. Y., Benden, C., Christie, J. D., Dipchand, A. I., Dobbels, F., Kirk, R., Rahmel, A. O., Hertz, M. I., et al. (2012). The registry of the international society for heart and lung transplantation: 29th offificial adult heart transplant report—2012. Journal of Heart and Lung Transplantation, 31, 1052–1064.

    Article  Google Scholar 

  95. Sykes, M., & Sachs, D. H. (2022). Progress in xenotransplantation: Overcoming immune barriers. Nature Reviews. Nephrology, 18(12), 745–761. https://doi.org/10.1038/s41581-022-00624-6. Epub 2022 Oct 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fischer, K., Kraner-Scheiber, S., Petersen, B., Rieblinger, B., Buermann, A., Flisikowska, T., Flisikowski, K., Christan, S., Edlinger, M., Baars, W., Kurome, M., Zakhartchenko, V., Kessler, B., Plotzki, E., Szczerbal, I., Switonski, M., Denner, J., Wolf, E., Schwinzer, R., … Schnieke, A. (2016). Efficient production of multi-modified pigs for xenotransplantation by “combineering”, gene stacking and gene editing. Science and Reports, 6, 29081. https://doi.org/10.1038/srep29081

    Article  CAS  Google Scholar 

  97. Denner, J. (2016). How active are porcine endogenous retroviruses (PERVs)? Viruses, 8(8), 215. https://doi.org/10.3390/v8080215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heo, Y., Cho, Y., Oh, K. B., Park, K. H., Cho, H., Choi, H., Kim, M., Yun, I. J., Lee, H. J., & Kim, Y. B. (2019). Detection of pig cells harboring porcine endogenous retroviruses in non-human primate bladder after renal xenotransplantation. Viruses, 11(9), 801. https://doi.org/10.3390/v11090801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Denner, J. (2015). Xenotransplantation and porcine cytomegalovirus. Xenotransplantation, 22(5), 329–335. https://doi.org/10.1111/xen.12180

    Article  PubMed  Google Scholar 

  100. Montgomery, R. A., Stern, J. M., Lonze, B. E., Tatapudi, V. S., Mangiola, M., Wu, M., Weldon, E., Lawson, N., Deterville, C., Dieter, R. A., Sullivan, B., Boulton, G., Parent, B., Piper, G., Sommer, P., Cawthon, S., Duggan, E., Ayares, D., Dandro, A., … Stewart, Z. A. (2022). Results of two cases of pig-to-human kidney xenotransplantation. New England Journal of Medicine, 386(20), 1889–1898. https://doi.org/10.1056/NEJMoa2120238

    Article  CAS  PubMed  Google Scholar 

  101. Cowan, P. J., & Tector, A. J. (2017). The Resurgence of xenotransplantation. American Journal of Transplantation, 17, 2531–2536. https://doi.org/10.1111/ajt.14311

    Article  CAS  PubMed  Google Scholar 

  102. Cooper, D. K. C., Hara, H., Iwase, H., Yamamoto, T., Li, Q., Ezzelarab, M., Federzoni, E., Dandro, A., & Ayares, D. (2019). Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation, 26(4), e12516. https://doi.org/10.1111/xen.12516. Epub 2019 Apr 15.

    Article  PubMed  PubMed Central  Google Scholar 

  103. FDA xenotransplantation guidances. https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/xenotransplantation-guidances. Accessed May 1, 2020.

  104. Tsuji, I., Kuroda, K., Fujieda, J., Shiraishi, Y., Kassai, T., & Shida, H. (1963). A clinical and experimental study on cystoplasty not using the intestine. Journal of Urology, 89, 214–225. https://doi.org/10.1016/s0022-5347(17)64531-2

    Article  CAS  PubMed  Google Scholar 

  105. Tsuji, I., Kuroda, K., Fujieda, J., Shiraishi, Y., & Kunishima, K. (1967). Clinical experiences of bladder reconstruction using preserved bladder and gelatin sponge bladder in the case of bladder cancer. Journal of Urology, 98(1), 91–92. https://doi.org/10.1016/s0022-5347(17)62828-3

    Article  CAS  PubMed  Google Scholar 

  106. Kelâmi, A. (1975). Duraplasty of the urinary bladder–results after two to six years. European Urology, 1(4), 178–181.

    Article  PubMed  Google Scholar 

  107. Kelâmi, A., Kunkel, M., Stolpmann, H. J., & Fiedler, U. (1976). Lyophilisierte Schweineblase als partieller Blasenwandersatz [Lyophilized pig bladder as a partial bladder wall substitute (author’s transl)]. Urologia Internationalis, 31(3), 211–216. https://doi.org/10.1159/000280054. German.

    Article  PubMed  Google Scholar 

  108. Bayliss, G. (2022). Practical ethical concerns in allocation of pig kidneys to humans. Clinical Kidney Journal, 15(12), 2161–2168. https://doi.org/10.1093/ckj/sfac125

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nellore, A., Walker, J., Kahn, M. J., & Fishman, J. A. (2022). Moving xenotransplantation from bench to bedside: Managing infectious risk. Transplant Infectious Disease, 24(6), e13909. https://doi.org/10.1111/tid.13909. Epub 2022 Jul 29.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, Q., Li, T., Wang, K., Zhang, Q., Geng, Z., Deng, S., Cheng, C., & Wang, Y. (2022). Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Frontiers in Immunology, 13, 928173. https://doi.org/10.3389/fimmu.2022.928173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamanaka, S. (2022). Generation of chimeric kidneys using progenitor cell replacement: Oshima Award Address 2021. Clinical and Experimental Nephrology, 26(6), 491–500. https://doi.org/10.1007/s10157-022-02191-3. Epub 2022 Feb 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Goto, T., Hara, H., Sanbo, M., Masaki, H., Sato, H., Yamaguchi, T., Hochi, S., Kobayashi, T., Nakauchi, H., & Hirabayashi, M. (2019). Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nature Communications, 10(1), 451. https://doi.org/10.1038/s41467-019-08394-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zeng, X. X., Zeng, J., & Zhu, B. (2021). Future generation of combined multimodal approach to treat brain glioblastoma multiforme and potential impact on micturition control. Reviews in the Neurosciences, 33(3), 313–326. https://doi.org/10.1515/revneuro-2021-0068

    Article  CAS  PubMed  Google Scholar 

  114. Eisenson, D. L., Hisadome, Y., & Yamada, K. (2022). Progress in xenotransplantation: Immunologic barriers, advances in gene editing, and successful tolerance induction strategies in pig-to-primate transplantation. Frontiers in Immunology, 13, 899657. https://doi.org/10.3389/fimmu.2022.899657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zeng, X. X., & Zeng, J. B. (2023). Systems medicine as a strategy to deal with Alzheimer’s disease. Journal of Alzheimer’s Disease, 96(4), 1411–1426. https://doi.org/10.3233/JAD-230739

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Xiao Xue Zeng is the first author and the corresponding author, conceptualized and wrote the manuscript. Yuyan Wu is the second author and drew the figures. All authors gave approval to the final version to be published; and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Xiao Xue Zeng.

Ethics declarations

Conflict of interest

The author has no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X.X., Wu, Y. Strategies of Bladder Reconstruction after Partial or Radical Cystectomy for Bladder Cancer. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01163-0

Keywords

Navigation