Skip to main content
Log in

Isolation and Characterization of an Antioxidant Aryl Polyene Pigment from Antarctic Bacterium Lysobacter sp. A03

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lysobacter is known as a bacterial genus with biotechnological potential, producing an array of enzymes, antimicrobial metabolites, and bioactive antioxidant compounds, including aryl polyene (APE) pigments that have been described as protecting substances against photooxidative damage and lipid peroxidation. In this study, the pigment extracted from keratinolytic Lysobacter sp. A03 isolated from Antarctic environment was characterized. The results of KOH test, UV–vis spectroscopy, CIELAB color system, 1H-NMR, and FTIR-ATR spectroscopy suggest the pigment is a yellow xanthomonadin-like pigment. The in vitro antioxidant activity of the pigment was confirmed by the scavenging of ABTS and DPPH radicals. In silico analysis of the genome through antiSMASH software was also performed and the secondary metabolite gene clusters for APE and resorcinol synthesis were identified, suggesting that proteins responsible for the pigment biosynthesis are encoded in Lysobacter A03 genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availabitily

The genome data from Lysobacter sp. strain A03 is publicy available at GenBank (https://www.ncbi.nlm.nih.gov/genbank/), accession number JXSS00000000.

References

  1. Aruldass, C. A., Dufossé, L., & Ahmad, W. A. (2018). Current perspective of yellowish-orange pigments from microorganisms: A review. Journal of Cleaner Production, 180, 168–182. https://doi.org/10.1016/j.clepro.2018.01.093

    Article  CAS  Google Scholar 

  2. Liu, J., Luo, Y., Guo, T., Tang, C., Chai, X., Zhao, W., Bai, J., & Lin, Q. (2020). Cost-effective pigment production by Monascus purpureus using rice straw hydrolysate as substrate in submerged fermentation. Journal of Bioscience and Bioengineering, 129, 229–236. https://doi.org/10.1016/j.jbiosc.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  3. Venil, C. K., Dufossé, L., & Devi, P. R. (2020). Bacterial pigments: Sustainable compounds with market potential for pharma and food industry. Frontiers in Sustainable Food Systems, 4, 100. https://doi.org/10.3389/fsufs.2020.00100

    Article  Google Scholar 

  4. Orlandi, V. T., Martegani, E., Giaroni, C., Baj, A., & Bolognese, F. (2022). Bacterial pigments: A colorful palette reservoir for biotechnological applications. Biotechnology and Applied Biochemistry, 69, 981–1001. https://doi.org/10.1002/bab.2170

    Article  CAS  PubMed  Google Scholar 

  5. Agarwal, H., Bajpai, S., Mishra, A., Kohli, I., Varma, A., Fouillaud, M., Dufossé, L., & Joshi, N. C. (2023). Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications. Microorganisms, 11, 614. https://doi.org/10.3390/microorganisms11030614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rana, B., Bhattacharyya, M., Patni, B., Arya, M., & Joshi, G. K. (2021). The realm of microbial pigments in the food color market. Frontiers in Sustainable Food Systems, 5, 603892. https://doi.org/10.1189/fsufs.2021.603892

    Article  Google Scholar 

  7. Pailliè-Jiménez, M. E., Stincone, P., & Brandelli, A. (2020). Natural pigments of microbial origin. Frontiers in Sustainable Food Systems, 4, 590439. https://doi.org/10.3389/fsufs.2020.590439

    Article  Google Scholar 

  8. Schöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., Shindo, K., Sandmann, G., & Bode, H. B. (2016). Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem, 17, 247–253. https://doi.org/10.1002/cbic.201500474

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y., Qian, G., Li, Y., Wang, Y., Wang, Y., Wright, S., Li, Y., Shen, Y., Liu, F., & Du, L. (2013). Biosynthetic mechanism for sunscreens of the biocontrol agent Lysobacter enzymogenes. PLoS ONE, 8, e66633. https://doi.org/10.1371/journal.pone.0066633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, Y. W., Cao, X. Q., & Poplawsky, A. R. (2020). Chemical structure, biological roles, biosynthesis and regulation of the yellow xanthomonadin pigments in the phytopathogenic genus Xanthomonas. Molecular Plant-Microbe Interactions, 33, 705–714. https://doi.org/10.1094/MPMI-11-19-0326-CR

    Article  CAS  PubMed  Google Scholar 

  11. Madden, K. S., Laroche, B., David, S., Batsanov, A. S., Thompson, D., Knowles, J. P., & Whiting, A. (2018). Approaches to styrenyl building blocks for the synthesis of polyene xanthomonadin and its analogues. European Journal of Organic Chemistry, 2018, 5312–5322. https://doi.org/10.1002/ejoc.201800540

    Article  CAS  Google Scholar 

  12. Kumar, S., Bansal, K., Patil, P. P., & Patil, P. B. (2019). Phylogenomics insights into order and families of Lysobacterales. Access Microbiology, 1, e000015. https://doi.org/10.1099/acmi.0.000015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, S. Y., Kim, P. S., Sung, H., Hyun, D. W., & Bae, J. W. (2022). Lysobacter ciconiae sp. nov., and Lysobacter avium sp. nov., isolated from the faeces of an Oriental stork. Journal of Microbiology, 60, 469–477. https://doi.org/10.1007/s12275-022-1647-5

    Article  CAS  PubMed  Google Scholar 

  14. Xu, S., Zhang, Z., Xie, X., Shi, Y., Chai, A., Fan, T., Li, B., & Li, L. (2022). Comparative genomics provides insights into the potential biocontrol mechanism of two Lysobacter enzymogenes strains with distinct antagonistic activities. Frontiers in Microbiology, 13, 966986. https://doi.org/10.3389/fmicb.2022.966986

    Article  PubMed  PubMed Central  Google Scholar 

  15. Drenker, C., El Mazouar, D., Bücker, G., Weißhaupt, S., Wienke, E., Koch, E., Kunz, S., Reineke, A., Rondot, Y., & Linkies, A. (2023). Characterization of a disease-suppressive isolate of Lysobacter enzymogenes with broad antagonistic activity against bacterial, oomycetal and fungal pathogens in different crops. Plants, 12, 682. https://doi.org/10.3390/plants12030682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie, Y., Wright, S., Shen, Y., & Du, L. (2012). Bioactive natural products from Lysobacter. Natural Product Reports, 29, 1277–1287. https://doi.org/10.1039/c2np20064c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saini, D. K., Chakdar, H., Pabbi, S., & Shukla, P. (2020). Enhancing production of microalgal biopigments through metabolic and genetic engineering. Critical Reviews in Food Science and Nutrition, 60, 391–405. https://doi.org/10.1080/10408398.2018.1533518

    Article  CAS  PubMed  Google Scholar 

  18. Sen, T., Barrow, C. J., & Deshmukh, S. K. (2019). Microbial pigments in the food industry -Challenges and the way forward. Frontiers in Nutrition, 6, 7. https://doi.org/10.3389/fnut.2019.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pereira, J. Q., Lopes, F. C., Petry, M. V., Medina, L. F. C., & Brandelli, A. (2014). Isolation of three novel Antarctic psychrotolerant feather-degrading bacteria and partial purification of keratinolytic enzyme from Lysobacter sp. A03. International Biodeterioration and Biodegradation, 88, 1–7. https://doi.org/10.1016/j.ibiod.2013.11.012

    Article  CAS  Google Scholar 

  20. Pereira, J. Q., Ambosini, A., Passaglia, L. M., & Brandelli, A. (2017). A new cold-adapted serine peptidase from Antarctic Lysobacter sp. A03: Insights about enzyme activity at low temperatures. International Journal of Biological Macromolecules, 103, 854–862. https://doi.org/10.1016/j.ijbiomac.2017.05.142

    Article  CAS  PubMed  Google Scholar 

  21. Fautz, E., & Reichenbach, H. (1980). A simple test for flexirubin-type pigments. FEMS Microbiology Letters, 8, 87–91. https://doi.org/10.1111/j.1574-6968.1980.tb05056.x

    Article  CAS  Google Scholar 

  22. Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS(*+) assay. Journal of Agricultural and Food Chemistry, 52, 4669–4674. https://doi.org/10.1021/jf0400056

    Article  CAS  PubMed  Google Scholar 

  23. Best, I., Casimiro-Gonzales, S., Portugal, A., Olivera-Montenegro, L., Aguilar, L., Muñoz, A. M., & Ramos-Escudero, F. (2020). Phytochemical screening and DPPH radical scavenging activity of three morphotypes of Mauritia flexuosa L.f. from Peru, and thermal stability of a milk-based beverage enriched with carotenoids from these fruits. Heliyon, 6, e05209. https://doi.org/10.1016/j.heliyon.2020.e05209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pereira, J. Q., Ambrosini, A., Sant’Anna, F. H., Tadra-Sfeir, M., Faoro, H., Pedrosa, F. O., Souza, E. M., Brandelli, A., & Passaglia, L. M. (2015). Whole-genome shotgun sequence of the keratinolytic bacterium Lysobacter sp. A03, isolated from the Antarctic environment. Genome Announcements, 3, e00246-15. https://doi.org/10.1128/genomeA.00246-15

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H., & Weber, T. (2023). antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures, and visualization. Nucleic Acids Research, 51, W46–W50. https://doi.org/10.1093/nar/gkad344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Auch, A. F., Klenk, H. P., & Göker, M. (2012). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Standards in Genomic Sciences, 2, 142–148. https://doi.org/10.4056/sigs.541628

    Article  Google Scholar 

  27. Asnicar, F., Thomas, A. M., Beghini, F., Mengoni, C., Manara, S., Manghi, P., Zhu, Q., Bolzan, M., Cumbo, F., May, U., Sanders, J. G., Zolfo, M., Kopylova, E., Pasolli, E., Knight, R., Mirarab, S., Huttenhower, C., & Segata, N. (2020). Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nature Communications, 11, 2500. https://doi.org/10.1038/s41467-020-16366-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kimura, T., Fukuda, W., Sanada, T., & Imanaka, T. (2015). Characterization of water-soluble dark-brown pigment from Antarctic bacterium, Lysobacter oligotrophicus. Journal of Bioscience and Bioengineering, 120, 58–61. https://doi.org/10.1016/j.jbiosc.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  29. Schöner, T. A., Fuchs, S. W., Reinhold-Hurek, B., & Bode, H. B. (2014). Identification and biosynthesis of a novel xanthomonadin-dialkylresorcinol-hybrid from Azoarcus sp. BH72. PLoS One, 9, e90922. https://doi.org/10.1371/journal.pone.0090922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohman, A., Windarsih, A., Lukitaningsih, E., Rafi, M., Betania, K., & Fadzillah, N. A. (2019). The use of FTIR and Raman spectroscopy in combination with chemometrics for analysis of biomolecules in biomedical fluids: A review. Biomedical Spectroscopy and Imaging, 8, 55–71. https://doi.org/10.3233/BSI-200189

    Article  Google Scholar 

  31. Andrewes, A. G., Jenkins, C. L., Starr, M. P., Shepherd, J., & Hope, H. (1976). Structure of xanthomonadin I, a novel dibrominated aryl-polyene pigment produced by the bacterium Xanthomonas juglandis. Tetrahedron Letters, 45, 4023–4024.

    Article  Google Scholar 

  32. Deng, K., Yang, Z., Luo, J., & Wu, K. (2018). Synthesis of aryl and heterocyclic polyenes and their activity in free radical scavenging. Journal of Chemical Research, 42, 129–132. https://doi.org/10.3184/174751918X15199929401287

    Article  CAS  Google Scholar 

  33. Jiménez, M. E. P., Pinilla, C. M. B., Rodrigues, E., & Brandelli, A. (2019). Extraction and partial characterisation of antioxidant pigment produced by Chryseobacterium sp. kr6. Natural Products Research, 33, 1541–1549. https://doi.org/10.1080/14786419.2017.1423304

    Article  CAS  Google Scholar 

  34. Li, F., Xue, F., & Yu, X. (2017). GC-MS, FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici. Current Microbiology, 74, 532–539. https://doi.org/10.1007/s00284-017-1220-3

    Article  CAS  PubMed  Google Scholar 

  35. Ahmad, W. A., Ahmad, W. Y. W., Zakaria, Z. A., & Yusof, N. Z. (2012). Isolation of pigment-producing bacteria and characterization of the extracted pigments. In W. A. Ahmad, W. Y. W. Ahmad, Z. A. Zakaria, & N. Z. Yusof (Eds.), Application of Bacterial Pigments as Colorant Springer Briefs in Molecular Science (pp. 22–44). Berlin: Springer. https://doi.org/10.1007/978-3-642-24520-6_2

    Chapter  Google Scholar 

  36. Grammbitter, G. L. C., Shi, Y. M., Shi, Y. N., Vemulapalli, S. P. B., Richter, C., Schwalbe, H., Alanjary, M., Schüffler, A., Witt, M., Griesinger, C., & Bode, H. B. (2020). The chemical structures of widespread microbial aryl polyene lipids. bioRxiv. https://doi.org/10.1101/2020.12.19.423268

    Article  Google Scholar 

  37. Aririatu, L. E., & Kester, A. S. (1985). Isolation and characterization of the pigment esters of Xanthomonas juglandis (campestris). Microbiology, 131, 2947–2052. https://doi.org/10.1099/00221289-131-9-2047

    Article  Google Scholar 

  38. Campos, M., Gómez, K., Ordoñez, Y., & Ancona, D. (2013). Polyphenols, ascorbic acid and carotenoids contents and antioxidant properties of habanero pepper (Capsicum chinense) fruit. Food and Nutrition Sciences, 4, 47–54. https://doi.org/10.4236/fns.2013.48A006

    Article  CAS  Google Scholar 

  39. Línzembold, I., Czett, D., Böddi, K., Kurtán, T., Király, S. B., Gulyás-Fekete, G., Takátsy, A., Lóránd, T., Deli, J., Agócs, A., & Nagy, V. (2020). Study on the synthesis, antioxidant properties, and self-assembly of carotenoid-flavonoid conjugates. Molecules, 25, 636. https://doi.org/10.3390/molecules25030636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., & Rice-Evans, C. A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS Letters, 384, 240–242. https://doi.org/10.1016/0014-5793(96)00323-7

    Article  CAS  PubMed  Google Scholar 

  41. Cimermancic, P., Medema, M. H., Claesen, J., Kurita, K., Wieland Brown, L. C., Mavrommatis, K., Pati, A., Godfrey, P. A., Koehrsen, M., Clardy, J., Birren, B. W., Takano, E., Sali, A., Linington, R. G., & Fischbach, M. A. (2014). Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 158, 412–421. https://doi.org/10.1016/j.cell.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Órdenes-Aenishanslins, N., Anziani-Ostuni, G., Vargas-Reyes, M., Alarcón, J., Tello, A., & Pérez-Donoso, J. M. (2016). Pigments from UV-resistant Antarctic bacteria as photosensitizers in dye sensitized solar cells. Journal of Photochemistry and Photobiology B, 162, 707–714. https://doi.org/10.1016/j.jphotobiol.2016.08.004

    Article  CAS  Google Scholar 

  43. Goel, A. K., Rajagopal, L., Nagesh, N., & Sonti, R. V. (2002). Genetic locus encoding functions involved in biosynthesis and outer membrane localization of xanthomonadin in Xanthomonas oryzae pv. oryzae. Journal of Bacteriology, 184, 3539–3548. https://doi.org/10.1128/JB.184.13.3539-3548.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mindrebo, J. T., Patel, A., Kim, W. E., Davis, T. D., Chen, A., Bartholow, T. G., La Clair, J. J., McCammon, J. A., Noel, J. P., & Burkart, M. D. (2020). Gating mechanism of elongating β-ketoacyl-ACP synthases. Nature Communications, 11, 1727. https://doi.org/10.1038/s41467-020-15455-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Bruijn, I., Cheng, X., de Jager, V., Expósito, R. G., Watrous, J., Patel, N., Postma, J., Dorrestein, P. C., Kobayashi, D., & Raaijmakers, J. M. (2015). Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics, 16, 991. https://doi.org/10.1186/s12864-015-2191-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq (grant 308880/2021-8) and CAPES (Brasilia, Brazil). MEPJ was a former recipient of a PhD fellowship from COLFUTURO (Bogotá, Colombia).

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No: 308880/2021-8) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 571 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pailliè-Jiménez, M.E., Stincone, P., Pereira, J.Q. et al. Isolation and Characterization of an Antioxidant Aryl Polyene Pigment from Antarctic Bacterium Lysobacter sp. A03. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01132-7

Keywords

Navigation