Skip to main content
Log in

EHMT2 Suppresses ARRB1 Transcription and Activates the Hedgehog Signaling to Promote Malignant Phenotype and Stem Cell Property in Oral Squamous Cell Carcinoma

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC) represents the primary subtype of head and neck squamous cell carcinoma (HNSCC), characterized by a high morbidity and mortality rate. Although previous studies have established specific correlations between euchromatic histone lysine methyltransferase 2 (EHMT2), a histone lysine methyltransferase, and the malignant phenotype of OSCC cells, its biological functions in OSCC remain largely unknown. This study, grounded in bioinformatics predictions, aims to clarify the influence of EHMT2 on the malignant behavior of OSCC cells and delve into the underlying mechanisms. EHMT2 exhibited high expression in OSCC tissues and demonstrated an association with poor patient outcomes. Artificial EHMT2 silencing in OSCC cells, achieved through lentiviral vector infection, significantly inhibited colony formation, migration, invasion, and cell survival. Regarding the mechanism, EHMT2 was found to bind the promoter of arrestin beta 1 (ARRB1), thereby suppressing its transcription through H3K9me2 modification. ARRB1, in turn, was identified as a negative regulator of the Hedgehog pathway, leading to a reduction in the proteins GLI1 and PTCH1. Cancer stem cells (CSCs) were enriched through repeated sphere formation assays in two OSCC cell lines. EHMT2 was found to activate the Hedgehog pathway, thus promoting sphere formation, migration and invasion, survival, and tumorigenic activity of the OSCC-CSCs. Notably, these effects were counteracted by the additional overexpression of ARRB1. In conclusion, this study provides novel evidence suggesting that EHMT2 plays specific roles in enhancing stem cell properties in OSCC by modulating the ARRB1-Hedgehog signaling cascade.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and Materials Availability

All the data generated or analyzed during this study are included in this published article.

Abbreviations

ANOVA:

Analysis of variance

ARRB1:

Arrestin beta 1

CSCs:

Cancer stem cells

ChIP:

Chromatin immunoprecipitation

DEGs:

Differentially expressed genes

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulphoxide

EHMT2:

Euchromatic histone lysine methyltransferase 2

FBS:

Fetal bovine saline

HNSCC/HNSC:

Head and neck squamous cell carcinoma

H3K9me2:

Histone 3 lysine 9 di-methylation

IHC:

Immunohistochemistry

KEGG:

Kyoto Encyclopedia of Genes and Genomes

NC:

Negative control

OSCC:

Oral squamous cell carcinoma

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

SAG:

Smoothened agonist

shRNA:

Short hairpin RNA

TUNEL:

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling

ve-:

Overexpression (of certain genes)

WB:

Western blot

References

  1. Panarese, I., Aquino, G., Ronchi, A., Longo, F., Montella, M., Cozzolino, I., Roccuzzo, G., Colella, G., Caraglia, M., & Franco, R. (2019). Oral and oropharyngeal squamous cell carcinoma: Prognostic and predictive parameters in the etiopathogenetic route. Expert Review of Anticancer Therapy, 19, 105–119.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma, A., Boaz, K., & Natarajan, S. (2018). Understanding patterns of invasion: A novel approach to assessment of podoplanin expression in the prediction of lymph node metastasis in oral squamous cell carcinoma. Histopathology, 72, 672–678.

    Article  PubMed  Google Scholar 

  3. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249.

    PubMed  Google Scholar 

  4. Johnson, D. E., Burtness, B., Leemans, C. R., Lui, V. W. Y., Bauman, J. E., & Grandis, J. R. (2020). Head and neck squamous cell carcinoma. Nature Reviews. Disease Primers, 6, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yu-Duan, T., Chao-Ping, W., Chih-Yu, C., Li-Wen, L., Tsun-Mei, L., Chia-Chang, H., Fu-Mei, C., Hsien-Chang, L., Hsia-Fen, H., Yau-Jiunn, L., & Jer-Yiing, H. (2013). Elevated plasma level of visfatin/pre-b cell colony-enhancing factor in male oral squamous cell carcinoma patients. Medicina Oral, Patología Oral y Cirugía Bucal, 18, e180–e186.

    Article  PubMed  Google Scholar 

  6. Ming, X. Y., Fu, L., Zhang, L. Y., Qin, Y. R., Cao, T. T., Chan, K. W., Ma, S., Xie, D., & Guan, X. Y. (2016). Integrin alpha7 is a functional cancer stem cell surface marker in oesophageal squamous cell carcinoma. Nature Communications, 7, 13568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noguti, J., De Moura, C. F., De Jesus, G. P., Da Silva, V. H., Hossaka, T. A., Oshima, C. T., & Ribeiro, D. A. (2012). Metastasis from oral cancer: An overview. Cancer Genomics and Proteomics, 9, 329–335.

    CAS  PubMed  Google Scholar 

  8. Sasahira, T., & Kirita, T. (2018). Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. International Journal of Molecular Sciences, 19(8), 2413.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fan, T., Wang, X., Zhang, S., Deng, P., Jiang, Y., Liang, Y., Jie, S., Wang, Q., Li, C., Tian, G., Zhang, Z., Ren, Z., Li, B., Chen, Y., He, Z., Luo, Y., Chen, M., Wu, H., Yu, Z., … Zhang, Z. (2022). NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduction and Targeted Therapy, 7, 130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nachiyappan, A., Gupta, N., & Taneja, R. (2022). EHMT1/EHMT2 in EMT, cancer stemness and drug resistance: Emerging evidence and mechanisms. FEBS Journal, 289, 1329–1351.

    Article  CAS  PubMed  Google Scholar 

  11. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., & Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837.

    Article  CAS  PubMed  Google Scholar 

  12. Tachibana, M., Sugimoto, K., Nozaki, M., Ueda, J., Ohta, T., Ohki, M., Fukuda, M., Takeda, N., Niida, H., Kato, H., & Shinkai, Y. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes and Development, 16, 1779–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, P., Qian, Q., Zhu, Z., Shen, X., Yu, S., Yu, Z., Sun, R., Li, Y., Guo, D., & Fan, H. (2020). Increased expression of EHMT2 associated with H3K9me2 level contributes to the poor prognosis of gastric cancer. Oncology Letters, 20, 1734–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, K., Son, M. Y., Jung, C. R., Kim, D. S., & Cho, H. S. (2018). EHMT2 is a metastasis regulator in breast cancer. Biochemical and Biophysical Research Communications, 496, 758–762.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, T., Zhang, P., Li, W., Zhao, T., Zhang, Z., Chen, S., Yang, Y., Feng, Y., Li, F., Shirley Liu, X., Zhang, L., Jiang, G., & Zhang, F. (2017). G9A promotes tumor cell growth and invasion by silencing CASP1 in non-small-cell lung cancer cells. Cell Death and Disease, 8, e2726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ryu, T. Y., Kim, K., Han, T. S., Lee, M. O., Lee, J., Choi, J., Jung, K. B., Jeong, E. J., An, D. M., Jung, C. R., Lim, J. H., Jung, J., Park, K., Lee, M. S., Kim, M. Y., Oh, S. J., Hur, K., Hamamoto, R., Park, D. S., … Cho, H. S. (2022). Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer. ISME Journal, 16, 1205–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei, L., Chiu, D. K., Tsang, F. H., Law, C. T., Cheng, C. L., Au, S. L., Lee, J. M., Wong, C. C., Ng, I. O., & Wong, C. M. (2017). Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. Journal of Hepatology, 67, 758–769.

    Article  CAS  PubMed  Google Scholar 

  18. Hu, L., Zang, M. D., Wang, H. X., Zhang, B. G., Wang, Z. Q., Fan, Z. Y., Wu, H., Li, J. F., Su, L. P., Yan, M., Zhu, Z. Q., Yang, Q. M., Huang, Q., Liu, B. Y., & Zhu, Z. G. (2018). G9A promotes gastric cancer metastasis by upregulating ITGB3 in a SET domain-independent manner. Cell Death and Disease, 9, 278.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu, S., Ye, D., Guo, W., Yu, W., He, Y., Hu, J., Wang, Y., Zhang, L., Liao, Y., Song, H., Zhong, S., Xu, D., Yin, H., Sun, B., Wang, X., Liu, J., Wu, Y., Zhou, B. P., Zhang, Z., & Deng, J. (2015). G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma. Oncotarget, 6, 6887–6901.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jan, S., Dar, M. I., Wani, R., Sandey, J., Mushtaq, I., Lateef, S., & Syed, S. H. (2021). Targeting EHMT2/G9a for cancer therapy: Progress and perspective. European Journal of Pharmacology, 893, 173827.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong, X., Chen, X., Guan, X., Zhang, H., Ma, Y., Zhang, S., Wang, E., Zhang, L., & Han, Y. (2015). Overexpression of G9a and MCM7 in oesophageal squamous cell carcinoma is associated with poor prognosis. Histopathology, 66, 192–200.

    Article  PubMed  Google Scholar 

  22. Ren, A., Qiu, Y., Cui, H., & Fu, G. (2015). Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma. Biochemical and Biophysical Research Communications, 459, 10–17.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, R., Samal, S. K., Routray, S., Dash, R., & Dixit, A. (2017). Identification of oral cancer related candidate genes by integrating protein–protein interactions, gene ontology, pathway analysis and immunohistochemistry. Science and Reports, 7, 2472.

    Article  Google Scholar 

  24. Salaritabar, A., Berindan-Neagoe, I., Darvish, B., Hadjiakhoondi, F., Manayi, A., Devi, K. P., Barreca, D., Orhan, I. E., Suntar, I., Farooqi, A. A., Gulei, D., Nabavi, S. F., Sureda, A., Daglia, M., Dehpour, A. R., Nabavi, S. M., & Shirooie, S. (2019). Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research, 141, 466–480.

    Article  CAS  PubMed  Google Scholar 

  25. Takebe, N., Miele, L., Harris, P. J., Jeong, W., Bando, H., Kahn, M., Yang, S. X., & Ivy, S. P. (2015). Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nature Reviews. Clinical Oncology, 12, 445–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, F., Tiede, B., Massague, J., & Kang, Y. (2007). Beyond tumorigenesis: Cancer stem cells in metastasis. Cell Research, 17, 3–14.

    Article  CAS  PubMed  Google Scholar 

  27. Miele, E., Po, A., Begalli, F., Antonucci, L., Mastronuzzi, A., Marras, C. E., Carai, A., Cucchi, D., Abballe, L., Besharat, Z. M., Catanzaro, G., Infante, P., Di Marcotullio, L., Canettieri, G., De Smaele, E., Screpanti, I., Locatelli, F., & Ferretti, E. (2017). beta-arrestin1-Mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells. BMC Cancer, 17, 488.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang, J., Cai, H., Sun, L., Zhan, P., Chen, M., Zhang, F., Ran, Y., & Wan, J. (2018). LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/beta-catenin pathway and predicts poor survival of glioma patients. Journal of Experimental and Clinical Cancer Research, 37, 225.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang, H., Yi, J. K., Lim, S. G., Park, S., Zhang, H., Kim, E., Jang, S., Lee, M. H., Liu, K., Kim, K. R., Kim, E. K., Lee, Y., Kim, S. H., Ryoo, Z. Y., & Kim, M. O. (2021). Costunolide induces apoptosis via the reactive oxygen species and protein kinase B pathway in oral cancer cells. International Journal of Molecular Sciences, 22(14), 7509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, J., Wu, Z., & Huang, J. (2021). Flavopereirine suppresses the progression of human oral cancer by inhibiting the JAK-STAT signaling pathway via targeting LASP1. Drug Design, Development and Therapy, 15, 1705–1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, C. Y., Lin, C. K., Lin, G. J., Hsieh, C. C., Huang, S. H., Ma, K. H., Shieh, Y. S., Sytwu, H. K., & Chen, Y. W. (2017). Triptolide represses oral cancer cell proliferation, invasion, migration, and angiogenesis in co-inoculation with U937 cells. Clinical Oral Investigations, 21, 419–427.

    Article  PubMed  Google Scholar 

  32. Hatanaka, Y., Niinuma, T., Kitajima, H., Nishiyama, K., Maruyama, R., Ishiguro, K., Toyota, M., Yamamoto, E., Kai, M., Yorozu, A., Sekiguchi, S., Ogi, K., Dehari, H., Idogawa, M., Sasaki, Y., Tokino, T., Miyazaki, A., & Suzuki, H. (2021). DLEU1 promotes oral squamous cell carcinoma progression by activating interferon-stimulated genes. Science and Reports, 11, 20438.

    Article  CAS  Google Scholar 

  33. Silva Galbiatti-Dias, A. L., Fernandes, G. M. M., Castanhole-Nunes, M. M. U., Hidalgo, L. F., Nascimento Filho, C. H. V., Kawasaki-Oyama, R. S., Ferreira, L. A. M., Biselli-Chicote, P. M., Pavarino, E. C., & Goloni-Bertollo, E. M. (2018). Relationship between CD44(high)/CD133(high)/CD117(high) cancer stem cells phenotype and Cetuximab and Paclitaxel treatment response in head and neck cancer cell lines. American Journal of Cancer Research, 8, 1633–1641.

    PubMed  PubMed Central  Google Scholar 

  34. Yoganandarajah, V., Patel, J., van Schaijik, B., Bockett, N., Brasch, H. D., Paterson, E., Sim, D., Davis, P. F., Roth, I. M., Itinteang, T., & Tan, S. T. (2020). Identification of cancer stem cell subpopulations in head and neck metastatic malignant melanoma. Cells, 9(2), 324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu, F. W., Yu, C. C., Hsieh, P. L., Liao, Y. W., Lu, M. Y., & Chu, P. M. (2017). Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget, 8, 93912–93923.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., Wicha, M., Clarke, M. F., & Simeone, D. M. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  37. Skoda, A. M., Simovic, D., Karin, V., Kardum, V., Vranic, S., & Serman, L. (2018). The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosnian Journal of Basic Medical Sciences, 18, 8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, Y. W., Kao, S. Y., Wang, H. J., & Yang, M. H. (2013). Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer, 119, 4259–4267.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, G. Z., Wu, Q. Q., Zheng, Z. N., Shao, T. R., & Lv, X. Z. (2019). Identification of candidate biomarkers and analysis of prognostic values in oral squamous cell carcinoma. Frontiers in Oncology, 9, 1054.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shen, T., Zhang, J., Wang, Y., & Liu, B. (2022). FCGBP is a promising prognostic biomarker and correlates with immunotherapy efficacy in oral squamous cell carcinoma. Journal of Immunology Research, 2022, 8443392.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang, X., Xu, H., Zhou, Z., Guo, S., & Chen, R. (2022). IGF2BP2 maybe a novel prognostic biomarker in oral squamous cell carcinoma. Bioscience Reports, 42(2), BSR20212119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rao, R. A., Ketkar, A. A., Kedia, N., Krishnamoorthy, V. K., Lakshmanan, V., Kumar, P., Mohanty, A., Kumar, S. D., Raja, S. O., Gulyani, A., Chaturvedi, C. P., Brand, M., Palakodeti, D., & Rampalli, S. (2019). KMT1 family methyltransferases regulate heterochromatin-nuclear periphery tethering via histone and non-histone protein methylation. EMBO Reports, 20(5), e43260.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yuan, Y., Wang, Q., Paulk, J., Kubicek, S., Kemp, M. M., Adams, D. J., Shamji, A. F., Wagner, B. K., & Schreiber, S. L. (2012). A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chemical Biology, 7, 1152–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, J., Dorsey, J., Chuikov, S., Zhang, X., Jenuwein, T., Reinberg, D., & Berger, S. L. (2010). G9a and Glp methylate lysine 373 in the tumor suppressor p53. Journal of Biological Chemistry, 285, 9636–9641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dong, C., Wu, Y., Yao, J., Wang, Y., Yu, Y., Rychahou, P. G., Evers, B. M., & Zhou, B. P. (2012). G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. The Journal of Clinical Investigation, 122, 1469–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thng, D. K. H., Hooi, L., Toh, C. C. M., Lim, J. J., Rajagopalan, D., Syariff, I. Q. C., Tan, Z. M., Rashid, M., Zhou, L., Kow, A. W. C., Bonney, G. K., Goh, B. K. P., Kam, J. H., Jha, S., Dan, Y. Y., Chow, P. K. H., Toh, T. B., & Chow, E. K. (2023). Histone-lysine N-methyltransferase EHMT2 (G9a) inhibition mitigates tumorigenicity in Myc-driven liver cancer. Molecular Oncology, 17, 2275–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, W., Wang, J., Liu, S., Ren, Y., Wang, J., Liu, S., Cui, W., Jia, L., Tang, X., Yang, J., Wu, C., & Wang, L. (2022). An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Molecular Cancer, 21, 106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fong, K. W., Zhao, J. C., Lu, X., Kim, J., Piunti, A., Shilatifard, A., & Yu, J. (2022). PALI1 promotes tumor growth through competitive recruitment of PRC2 to G9A-target chromatin for dual epigenetic silencing. Molecular Cell, 82(4611–4626), e4617.

    Google Scholar 

  49. Ye, Y., Jiang, H., Wu, Y., Wang, G., Huang, Y., Sun, W., & Zhang, M. (2022). Role of ARRB1 in prognosis and immunotherapy: A Pan-Cancer analysis. Frontiers in Molecular Biosciences, 9, 1001225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, X., Kong, Z., Xu, X., Yun, X., Chao, J., Ding, D., Li, T., Gao, Y., Guan, N., Zhu, C., & Qin, X. (2021). ARRB1 drives gallbladder cancer progression by facilitating TAK1/MAPK signaling activation. Journal of Cancer, 12, 1926–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lei, Y., Xu, X., Liu, H., Chen, L., Zhou, H., Jiang, J., Yang, Y., & Wu, B. (2021). HBx induces hepatocellular carcinogenesis through ARRB1-mediated autophagy to drive the G(1)/S cycle. Autophagy, 17, 4423–4441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Son, D., Kim, Y., Lim, S., Kang, H. G., Kim, D. H., Park, J. W., Cheong, W., Kong, H. K., Han, W., Park, W. Y., Chun, K. H., & Park, J. H. (2019). miR-374a-5p promotes tumor progression by targeting ARRB1 in triple negative breast cancer. Cancer Letters, 454, 224–233.

    Article  CAS  PubMed  Google Scholar 

  53. Shen, H., Wang, L., Zhang, J., Dong, W., Zhang, T., Ni, Y., Cao, H., Wang, K., Li, Y., Wang, Y., & Du, J. (2017). ARRB1 enhances the chemosensitivity of lung cancer through the mediation of DNA damage response. Oncology Reports, 37, 761–767.

    Article  CAS  PubMed  Google Scholar 

  54. Canettieri, G., Di Marcotullio, L., Greco, A., Coni, S., Antonucci, L., Infante, P., Pietrosanti, L., De Smaele, E., Ferretti, E., Miele, E., Pelloni, M., De Simone, G., Pedone, E. M., Gallinari, P., Giorgi, A., Steinkuhler, C., Vitagliano, L., Pedone, C., Schinin, M. E., … Gulino, A. (2010). Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nature Cell Biology, 12, 132–142.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, J. (2022). Hedgehog signaling mechanism and role in cancer. Seminars in Cancer Biology, 85, 107–122.

    Article  CAS  PubMed  Google Scholar 

  56. Ruiz i Altaba, A. (1999). Gli proteins and Hedgehog signaling: Development and cancer. Trends in Genetics, 15, 418–425.

    Article  CAS  PubMed  Google Scholar 

  57. Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., Zhang, G., Wang, X., Dong, Z., Chen, F., & Cui, H. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy, 5, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang, X., Venugopal, C., Manoranjan, B., McFarlane, N., O’Farrell, E., Nolte, S., Gunnarsson, T., Hollenberg, R., Kwiecien, J., Northcott, P., Taylor, M. D., Hawkins, C., & Singh, S. K. (2012). Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene, 31, 187–199.

    Article  PubMed  Google Scholar 

  59. Wei, X., Chen, Y., Jiang, X., Peng, M., Liu, Y., Mo, Y., Ren, D., Hua, Y., Yu, B., Zhou, Y., Liao, Q., Wang, H., Xiang, B., Zhou, M., Li, X., Li, G., Li, Y., Xiong, W., & Zeng, Z. (2021). Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Molecular Cancer, 20, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lehnertz, B., Pabst, C., Su, L., Miller, M., Liu, F., Yi, L., Zhang, R., Krosl, J., Yung, E., Kirschner, J., Rosten, P., Underhill, T. M., Jin, J., Hebert, J., Sauvageau, G., Humphries, R. K., & Rossi, F. M. (2014). The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes and Development, 28, 317–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pangeni, R. P., Yang, L., Zhang, K., Wang, J., Li, W., Guo, C., Yun, X., Sun, T., Wang, J., & Raz, D. J. (2020). G9a regulates tumorigenicity and stemness through genome-wide DNA methylation reprogramming in non-small cell lung cancer. Clinical Epigenetics, 12, 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tao, H., Li, H., Su, Y., Feng, D., Wang, X., Zhang, C., Ma, H., & Hu, Q. (2014). Histone methyltransferase G9a and H3K9 dimethylation inhibit the self-renewal of glioma cancer stem cells. Molecular and Cellular Biochemistry, 394, 23–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Science and Technology Research Project of Jilin Provincial Department of Education (No. JJKH20230084KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyao Hu.

Ethics declarations

Conflict of interest

None declared.

Ethical Statement

The study protocol was approved by the Institutional Review Board of Affiliated Hospital of Beihua University. All patients had complete clinical information and signed the informed consent. All procedures were performed in adherence to the principles of Declaration of Helsinki. Animal experiments were conducted following the protocol approved by the Animal Ethics Committee of Affiliated Hospital of Beihua University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2024_1130_MOESM1_ESM.pdf

Supplementary file1 (PDF 51227 KB) Bioinformatics analyses of DEGs and their prognostic values in OSCC. A Volcano plots for DEGs between OSCC and normal samples in GSE56532, GSE30784, and GSE10121 datasets; B intersections of three sets of significantly DEGs (adj. p value < 0.05), human transcription factors or co-factors retrieved from the Human TFBD system, and top 2000 OSCC-related genes retrieved from the GeneCards system; C, D further analyses of genes showing consistent upregulation (C) or downregulation (D) patterns in GSE56532, GSE30784, and GSE10121 datasets; E protein–protein interaction analysis of intersecting genes in panels C and D; F prognostic significances of AURKB, BIRC5, CCNA2, CDK2, CHUK, CREBBP, EHMT2, FOXM1, PML, RELB, and STAT1 in HNSC in the Kaplan–Meier Plotter system; G expression profile of the EHMT2 in HNSC and normal cohorts in the StarBase system

12033_2024_1130_MOESM2_ESM.pdf

Supplementary file2 (PDF 500 KB) Bioinformatics analyses of downstream target of EHMT2. A Intersections of target transcripts of EHMT2 and the three sets of DEGs identified using GSE56532, GSE30784, and GSE10121 datasets; B, C KEGG pathway enrichment analysis of the 94 intersecting genes; D ARRB1 as a transcription target of EHMT2 in the hTFtarget system; E expression of ARRB1 in HNSC and normal cohorts in the StarBase system; F binding peaks between EHMT2 and ARRB1 promoter predicted in the ChIP-seq database

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Hu, G. EHMT2 Suppresses ARRB1 Transcription and Activates the Hedgehog Signaling to Promote Malignant Phenotype and Stem Cell Property in Oral Squamous Cell Carcinoma. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01130-9

Keywords

Navigation