Skip to main content

Advertisement

Log in

Identification of Potential Hub Genes Related to Acute Pancreatitis and Chronic Pancreatitis via Integrated Bioinformatics Analysis and In Vitro Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Acute pancreatitis (AP) and chronic pancreatitis (CP) are considered to be two separate pancreatic diseases in most studies, but some clinical retrospective analyses in recent years have found some degree of correlation between the two in actual treatment, however, the exact association is not clear. In this study, bioinformatics analysis was utilized to examine microarray sequencing data in mice, with the aim of elucidating the critical signaling pathways and genes involved in the progression from AP to CP. Differential gene expression analyses on murine transcriptomes were conducted using the R programming language and the R/Bioconductor package. Additionally, gene network analysis was performed using the STRING database to predict correlations among genes in the context of pancreatic diseases. Functional enrichment and gene ontology pathways common to both diseases were identified using Metascape. The hub genes were screened in the cytoscape algorithm, and the mRNA levels of the hub genes were verified in mice pancreatic tissues of AP and CP. Then the drugs corresponding to the hub genes were obtained in the drug-gene relationship. A set of hub genes, including Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9, were identified through analysis, demonstrating their pivotal roles in the progression from AP to CP. Notably, these genes were found to be enriched in the Helper T-cell factor (Th17) signaling pathway. Up-regulation of these genes in both AP and CP mouse models was validated through quantitative real-time polymerase chain reaction (qRT-PCR) results. The significance of the Th17 signaling pathway in the transition from AP to CP was underscored by our findings. Specifically, the essential genes driving this progression were identified as Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9. Crucial insights into the molecular mechanisms underlying pancreatitis progression were provided by this research, offering promising avenues for the development of targeted therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data in this article was obtained online and can be obtained from publicly available databases. This manuscript is not applicable.

References

  1. Beyer, G., Habtezion, A., Werner, J., et al. (2020). Chronic pancreatitis. Lancet, 396, 499–512.

    Article  PubMed  Google Scholar 

  2. Singh, V. K., Yadav, D., & Garg, P. K. (2019). Diagnosis and management of chronic pancreatitis: A review. JAMA, 322, 2422–2434.

    Article  CAS  PubMed  Google Scholar 

  3. Balázs, A., Balla, Z., Kui, B., et al. (2018). Ductal mucus obstruction and reduced fluid secretion are early defects in chronic pancreatitis. Frontiers in Physiology, 9, 632.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Y., Zhang, W. Q., Liu, X. Y., et al. (2023). Immune cells and immune cell-targeted therapy in chronic pancreatitis. Frontiers in Oncology, 13, 1151103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glaubitz, J., Wilden, A., Golchert, J., et al. (2022). In mouse chronic pancreatitis CD25(+)FOXP3(+) regulatory T cells control pancreatic fibrosis by suppression of the type 2 immune response. Nature Communications, 13, 4502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayerle, J., Sendler, M., Hegyi, E., et al. (2019). Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology, 156, 1951-1968.e1951.

    Article  CAS  PubMed  Google Scholar 

  7. Sidhu, S., Pandhi, P., Malhotra, S., et al. (2011). Rosiglitazone promotes pancreatic regeneration in experimental model of acute pancreatitis. Fundamental & Clinical Pharmacology, 25, 237–247.

    Article  CAS  Google Scholar 

  8. Paragomi, P., Spagnolo, D. M., Breze, C. R., et al. (2020). Introduction and validation of a novel acute pancreatitis digital tool: Interrogating large pooled data from 2 prospectively ascertained cohorts. Pancreas, 49, 1276–1282.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yadav, D., O’Connell, M., & Papachristou, G. I. (2012). Natural history following the first attack of acute pancreatitis. American Journal of Gastroenterology, 107, 1096–1103.

    Article  PubMed  Google Scholar 

  10. Liu, J., Gao, M., Nipper, M., et al. (2019). Activation of the intrinsic fibroinflammatory program in adult pancreatic acinar cells triggered by Hippo signaling disruption. PLoS Biology, 17, e3000418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han, S. Y., Conwell, D. L., Diaz, P. T., et al. (2022). The deleterious effects of smoking on the development and progression of chronic pancreatitis. Pancreatology, 22, 683–687.

    Article  PubMed  Google Scholar 

  12. Norberg, K. J., Nania, S., Li, X., et al. (2018). RCAN1 is a marker of oxidative stress, induced in acute pancreatitis. Pancreatology, 18, 734–741.

    Article  CAS  PubMed  Google Scholar 

  13. Kowalik, A. S., Johnson, C. L., Chadi, S. A., et al. (2007). Mice lacking the transcription factor Mist1 exhibit an altered stress response and increased sensitivity to caerulein-induced pancreatitis. American Journal of Physiology Gastrointestinal and Liver Physiology, 292, G1123-1132.

    Article  CAS  PubMed  Google Scholar 

  14. Ulmasov, B., Oshima, K., Rodriguez, M. G., et al. (2013). Differences in the degree of cerulein-induced chronic pancreatitis in C57BL/6 mouse substrains lead to new insights in identification of potential risk factors in the development of chronic pancreatitis. American Journal of Pathology, 183, 692–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, Q., Ren, J., Chen, X., et al. (2022). Contributions and prognostic performances of m7G RNA regulators in pancreatic adenocarcinoma. Chinese Medical Journal (Engl), 135, 2101–2103.

    Article  CAS  Google Scholar 

  16. Jin, S., & Hyun, T. K. (2020). Ectopic expression of production of anthocyanin pigment 1 (PAP1) improves the antioxidant and anti-melanogenic properties of ginseng (Panax ginseng C.A. Meyer) Hairy Roots. Antioxidants (Basel), 9, 922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, Y., Zhou, B., Pache, L., et al. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10, 1523.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alur, V. C., Raju, V., Vastrad, B., et al. (2019). Mining featured biomarkers linked with epithelial ovarian cancerbased on bioinformatics. Diagnostics (Basel), 9, 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, X., Chen, J., Wang, J., et al. (2022). Very-low-density lipoprotein receptor-enhanced lipid metabolism in pancreatic stellate cells promotes pancreatic fibrosis. Immunity, 55, 1185-1199.e1188.

    Article  Google Scholar 

  20. Shu, J., Ren, Y., Tan, W., et al. (2022). Identification of potential drug targets for vascular dementia and carotid plaques by analyzing underlying molecular signatures shared by them. Frontiers in Aging Neuroscience, 14, 967146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freshour, S. L., Kiwala, S., Cotto, K. C., et al. (2021). Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Research, 49, D1144-d1151.

    Article  CAS  PubMed  Google Scholar 

  22. Wen, L., Voronina, S., Javed, M. A., et al. (2015). Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology, 149, 481-492.e487.

    Article  CAS  PubMed  Google Scholar 

  23. Bansod, S., Aslam Saifi, M., Khurana, A., et al. (2020). Nimbolide abrogates cerulein-induced chronic pancreatitis by modulating β-catenin/Smad in a sirtuin-dependent way. Pharmacological Research, 156, 104756.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, Q. Y., Zhang, R., Zhang, Q. Y., et al. (2023). Disulfiram reduces the severity of mouse acute pancreatitis by inhibiting RIPK1-dependent acinar cell necrosis. Bioorganic Chemistry, 133, 106382.

    Article  CAS  PubMed  Google Scholar 

  25. Yasuda, K., Takeuchi, Y., & Hirota, K. (2019). The pathogenicity of Th17 cells in autoimmune diseases. Seminars in Immunopathology, 41, 283–297.

    Article  PubMed  Google Scholar 

  26. Littman, D. R., & Rudensky, A. Y. (2010). Th17 and regulatory T cells in mediating and restraining inflammation. Cell, 140, 845–858.

    Article  CAS  PubMed  Google Scholar 

  27. Griffith, M., Griffith, O. L., Coffman, A. C., et al. (2013). DGIdb—Mining the druggable genome. Nature Methods, 10, 1209–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freshour, S. L., Kiwala, S., Cotto, K. C., et al. (2020). Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Research, 49, D1144–D1151.

    Article  PubMed Central  Google Scholar 

  29. Ali, U. A., Issa, Y., Hagenaars, J. C., et al. (2016). Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis—ScienceDirect. Clinical Gastroenterology and Hepatology, 14, 738–746.

    Article  Google Scholar 

  30. Alexandre, M., Pandol, S. J., Gorelick, F. S., et al. (2011). The emerging role of smoking in the development of pancreatitis. Pancreatology, 11, 469–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yadav, D., Hawes, R. H., Brand, R. E., et al. (2009). Alcohol consumption, cigarette smoking, and the risk of recurrent acute and chronic pancreatitis. Archives of Internal Medicine, 169, 1035–1045.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, C., Heidt, D. G., Dalerba, P., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, V. M., Ferreira, R. M. M., Almagro, J., et al. (2019). CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth. Nature Cell Biology, 21, 1425–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, K., Wang, Q., Li, M., et al. (2021). Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. eBioMedicine, 66, 103315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singhi, A. D., Pai, R. K., Kant, J. A., et al. (2014). The histopathology of PRSS1 hereditary pancreatitis. American Journal of Surgical Pathology, 38, 346–353.

    Article  PubMed  Google Scholar 

  36. Singhi, A. D., Koay, E. J., Chari, S. T., et al. (2019). Early detection of pancreatic cancer: Opportunities and challenges. Gastroenterology, 156, 2024–2040.

    Article  PubMed  Google Scholar 

  37. Feng, Y., Li, W., Wang, Z., et al. (2022). The p-STAT3/ANXA2 axis promotes caspase-1-mediated hepatocyte pyroptosis in non-alcoholic steatohepatitis. Journal of Translational Medicine, 20, 497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, K., Zhang, T., Lei, Y., et al. (2018). Identification of ANXA2 (annexin A2) as a specific bleomycin target to induce pulmonary fibrosis by impeding TFEB-mediated autophagic flux. Autophagy, 14, 269–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hendley, A. M., Rao, A. A., Leonhardt, L., et al. (2021). Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. eLife, 10, e677776.

    Article  Google Scholar 

  40. Adams, C. R., Htwe, H. H., Marsh, T., et al. (2019). Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. eLife, 8, e45313.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Park, H., Li, Z., Yang, X. O., et al. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology, 6, 1133–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cen, M. E., Wang, F., Su, Y., et al. (2018). Gastrointestinal microecology: A crucial and potential target in acute pancreatitis. Apoptosis, 23, 377–387.

    Article  CAS  PubMed  Google Scholar 

  43. Cosmi, L., Santarlasci, V., Maggi, L., et al. (2014). Th17 plasticity: Pathophysiology and treatment of chronic inflammatory disorders. Current Opinion in Pharmacology, 17, 12–16.

    Article  CAS  PubMed  Google Scholar 

  44. Guo, J., Li, Z., Tang, D., et al. (2020). Th17/Treg imbalance in patients with severe acute pancreatitis: Attenuated by high-volume hemofiltration treatment. Medicine (Baltimore), 99, e21491.

    Article  CAS  PubMed  Google Scholar 

  45. Campbell, C., Dikiy, S., Bhattarai, S. K., et al. (2018). Extrathymically generated regulatory T cells establish a niche for intestinal border-dwelling bacteria and affect physiologic metabolite balance. Immunity, 48, 1245-1257.e1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, B., Jones, E. K., Manohar, M., et al. (2023). Distinct serum immune profiles define the spectrum of acute and chronic pancreatitis from the multicenter prospective evaluation of chronic pancreatitis for epidemiologic and translational studies (PROCEED) study. Gastroenterology, 165, 173–186.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Q., Manohar, M., Wei, Y., et al. (2019). STING signalling protects against chronic pancreatitis by modulating Th17 response. Gut, 68, 1827–1837.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 82100684), Natural Science Foundation of Chongqing China (CSTB2022NSCQ-MSX1493), Scientific Research Foundation of Chongqing University of Technology, National Natural Science Foundation Incubation project of Chongqing University of Technology (2022PYZ037), and the Funding Achievements of the Action Plan for High Quality Development of Graduate Education at Chongqing University of Technology (gzlcx20233384).

Author information

Authors and Affiliations

Authors

Contributions

Yan Shen designed this study and critically revised the manuscript. Lu Yuan and Yiyuan Liu drafted the manuscript. Lingyan Fan acquired and analyzed the data. Yiyuan Liu, Lu Yuan, Cai Sun and Sha Ran did literature search and performed the experiments. Kuilong Huang directed the qRT-PCR experiments and analyzed the data. All authors have reviewed and confirmed the final manuscript.

Corresponding author

Correspondence to Yan Shen.

Ethics declarations

Conflict of interest

The authors confirm that they do not have any acknowledged competing financial interests or personal affiliations that might have appeared to influence the research documented in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Liu, Y., Fan, L. et al. Identification of Potential Hub Genes Related to Acute Pancreatitis and Chronic Pancreatitis via Integrated Bioinformatics Analysis and In Vitro Analysis. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01118-5

Keywords

Navigation