Skip to main content
Log in

Polylactic-Co-glycolic Acid Polymer-Based Nano-Encapsulation Using Recombinant Maltoporin of Aeromonas hydrophila as Potential Vaccine Candidate

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Aquaculture production has been incurring economic losses due to infectious diseases by opportunistic pathogens like Aeromonas hydrophila, a bacterial agent that commonly affects warm water aquacultured fish. Developing an effective vaccine with an appropriate delivery system can elicit an immune response that would be a useful disease management strategy through prevention. The most practical method of administration would be the oral delivery of vaccine developed through nano-biotechnology. In this study, the gene encoding an outer membrane protein, maltoporin, of A. hydrophila, was identified, sequenced, and studied using bioinformatics tools to examine its potential as a vaccine candidate. Using a double emulsion method, the molecule was cloned, over-expressed, and encapsulated in a biodegradable polymer polylactic-co-glycolic acid (PLGA). The immunogenicity of maltoporin was identified through in silico analysis and thus taken up for nanovaccine preparation. The encapsulation efficiency of maltoporin was 63%, with an in vitro release of 55% protein in 48 h. The particle size and morphology of the encapsulated protein exhibited properties that could induce stability and function as an effective carrier system to deliver the antigen to the site and trigger immune response. Results show promise that the PLGA-mediated delivery system could be a potential carrier in developing a fish vaccine via oral administration. They provide insight for developing nanovaccine, since sustained in vitro release and biocompatibility were observed. There is further scope to study the immune response and examine the protective immunity induced by the nanoparticle-encapsulated maltoporin by oral delivery to fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. FAO. (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome FAO. https://doi.org/10.4060/cc0461en

  2. Maiti, B., Dubey, S., Munang’Andu, H. M., Karunasagar, I., Karunasagar, I., & Evensen, Ø. (2020). Application of outer membrane protein-based vaccines against major bacterial fish pathogens in India. Frontiers in immunology, 11, 1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, W., Zhu, C., Xiao, F., Liu, X., Xie, A., Chen, F., & Wu, Y. (2021). PH-controlled release of antigens using mesoporous silica nanoparticles delivery system for developing a fish oral vaccine. Frontiers in Immunology, 12, 644396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harikrishnan, R., & Balasundaram, C. (2005). Modern trends in Aeromonas hydrophila disease management with fish. Reviews in Fisheries Science, 13, 281–320.

    Article  Google Scholar 

  5. Dien, L. T., Ngo, T. P. H., Nguyen, T. V., Kayansamruaj, P., Salin, K. R., Mohan, C. V., & Dong, H. T. (2023). Non-antibiotic approaches to combat motile Aeromonas infections in aquaculture: Current state of knowledge and future perspectives. Reviews in Aquaculture, 15, 333–366.

    Article  Google Scholar 

  6. Vinay, T. N., Bhat, S., Gon Choudhury, T., Paria, A., Jung, M. H., Shivani Kallappa, G., & Jung, S. J. (2018). Recent advances in application of nanoparticles in fish vaccine delivery. Reviews in Fisheries Science & Aquaculture, 26, 29–41.

    Article  Google Scholar 

  7. Lun, J., Xia, C., Yuan, C., Zhang, Y., Zhong, M., Huang, T., & Hu, Z. (2014). The outer membrane protein, LamB (maltoporin), is a versatile vaccine candidate among the Vibrio species. Vaccine, 32, 809–815.

    Article  CAS  PubMed  Google Scholar 

  8. Giri, S. S., Kim, S. G., Kang, J. W., Kim, S. W., Kwon, J., Lee, S. B., & Park, S. C. (2021). Applications of carbon nanotubes and polymeric micro-/nanoparticles in fish vaccine delivery: Progress and future perspectives. Reviews in Aquaculture, 13, 1844–1863.

    Article  Google Scholar 

  9. Treuel, L., Jiang, X., & Nienhaus, G. U. (2013). New views on cellular uptake and trafficking of manufactured nanoparticles. Journal of the Royal Society Interface, 10, 20120939.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liang, A., Riaz, H., Dong, F., Luo, X., Yu, X., Han, Y., Guo, A., & Yang, L. (2014). Evaluation of efficacy, biodistribution and safety of antibiotic-free plasmid encoding somatostatin genes delivered by attenuated Salmonella enterica serovar Choleraesuis. Vaccine, 32, 1368–1374.

    Article  CAS  PubMed  Google Scholar 

  11. Harshitha, M., Nayak, A., Disha, S., Akshath, U. S., Dubey, S., & Munang’andu, H. M., Maiti, B. (2023). Nanovaccines to combat Aeromonas hydrophila infections in warm-water aquaculture: Opportunities and challenges. Vaccines, 11, 1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaalan, M., Saleh, M., El-Mahdy, M., & El-Matbouli, M. (2016). Recent progress in applications of nanoparticles in fish medicine: A review. Nanomedicine: Nanotechnology. Biology and Medicine, 12, 701–710.

    CAS  Google Scholar 

  13. Cascón, A., Anguita, J., Hernanz, C., Sánchez, M., Fernandez, M., & Naharro, G. (1996). Identification of Aeromonas hydrophila hybridization group 1 by PCR assays. Applied and environmental microbiology, 62, 1167–1170.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Santos, J. A., González, C. J., Otero, A., & García-López, M. L. (1999). Hemolytic activity and siderophore production in different Aeromonas species isolated from fish. Applied and environmental microbiology, 65, 5612–5614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maiti, B., Raghunath, P., Karunasagar, I., & Karunasagar, I. (2009). Cloning and expression of an outer membrane protein OmpW of Aeromonas hydrophila and study of its distribution in Aeromonas spp. Journal of applied microbiology, 107, 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  16. La, T., Phillips, N. D., Reichel, M. P., & Hampson, D. J. (2004). Protection of pigs from swine dysentery by vaccination with recombinant BmpB, a 29.7 kDa outer-membrane lipoprotein of Brachyspira hyodysenteriae. Veterinary Microbiology, 102, 97–109.

    Article  CAS  PubMed  Google Scholar 

  17. Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38, 3022–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research, 45, W24–W29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bagos, P. G., Liakopoulos, T. D., Spyropoulos, I. C., & Hamodrakas, S. J. (2004). PRED-TMBB: A web server for predicting the topology of β-barrel outer membrane proteins. Nucleic acids research, 32, W400–W404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  21. Khushiramani, R., Girisha, S. K., Bhowmick, P. P., Karunasagar, I., & Karunasagar, I. (2008). Prevalence of different outer membrane proteins in isolates of Aeromonas species. World Journal of Microbiology and Biotechnology, 24, 2263–2268.

    Article  CAS  Google Scholar 

  22. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the national academy of sciences, 76, 4350–4354.

    Article  CAS  Google Scholar 

  23. Pakulska, M. M., Elliott Donaghue, I., Obermeyer, J. M., Tuladhar, A., McLaughlin, C. K., Shendruk, T. N., & Shoichet, M. S. (2016). Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Science advances, 2, e1600519.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y., Kim, H., Lapitsky, Y., & Shoichet, M. S. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213.

    Article  CAS  PubMed  Google Scholar 

  25. Dubey, S., Avadhani, K., Mutalik, S., Sivadasan, S. M., Maiti, B., Girisha, S. K., & Mweemba Munang′andu, H. (2016). Edwardsiella tarda OmpA encapsulated in chitosan nanoparticles shows superior protection over inactivated whole cell vaccine in orally vaccinated fringed-lipped peninsula carp (Labeo fimbriatus). Vaccines, 4, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rauta, P. R., & Nayak, B. (2015). Parenteral immunization of PLA/PLGA nanoparticle encapsulating outer membrane protein (OMP) from Aeromonas hydrophila: Evaluation of immunostimulatory action in Labeo rohita (rohu). Fish & Shellfish Immunology, 44, 287–294.

    Article  CAS  Google Scholar 

  27. Hori, M., Onishi, H., & Machida, Y. (2005). Evaluation of Eudragit-coated chitosan microparticles as an oral immune delivery system. International Journal of Pharmaceutics, 297, 223–234.

    Article  CAS  PubMed  Google Scholar 

  28. Awan, F., Ali, M. M., Dong, Y., Yu, Y., Zeng, Z., & Liu, Y. (2021). In silico analysis of potential outer membrane beta-barrel proteins in Aeromonas hydrophila pangenome. International Journal of Peptide Research and Therapeutics, 27, 2381–2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, C., Yu, L., & Qian, R. (2007). Characterization of OmpK, GAPDH and their fusion OmpK–GAPDH derived from Vibrio harveyi outer membrane proteins: Their immunoprotective ability against vibriosis in large yellow croaker (Pseudosciaena crocea). Journal of Applied Microbiology, 103, 1587–1599.

    Article  CAS  PubMed  Google Scholar 

  30. Qian, R. H., Xiao, Z. H., Zhang, C. W., Chu, W. Y., Wang, L. S., Zhou, H. H., & Yu, L. (2008). A conserved outer membrane protein as an effective vaccine candidate from Vibrio alginolyticus. Aquaculture, 278, 5–9.

    Article  CAS  Google Scholar 

  31. Hamod, M. A., Nithin, M. S., Shukur, Y. N., Karunasagar, I., & Karunasagar, I. (2012). Outer membrane protein K as a subunit vaccine against V. anguillarum. Aquaculture, 354, 107–110.

    Article  Google Scholar 

  32. Feng, J., Lin, P., Guo, S., Jia, Y., Wang, Y., Zadlock, F., & Zhang, Z. (2017). Identification and characterization of a novel conserved 46 kD maltoporin of Aeromonas hydrophila as a versatile vaccine candidate in European eel (Anguilla anguilla). Fish & Shellfish Immunology, 64, 93–103.

    Article  CAS  Google Scholar 

  33. Shenoy, D. B., & Amiji, M. M. (2005). Poly (ethylene oxide)-modified poly (ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. International journal of pharmaceutics, 293, 261–270.

    Article  CAS  PubMed  Google Scholar 

  34. Champion, J. A., Katare, Y. K., & Mitragotri, S. (2007). Making polymeric micro-and nanoparticles of complex shapes. Proceedings of the National Academy of Sciences, 104, 11901–11904.

    Article  CAS  Google Scholar 

  35. Dubey, S., Avadhani, K., Mutalik, S., Sivadasan, S. M., Maiti, B., Paul, J., Girisha, S. K., Venugopal, M. N., Mutoloki, S., Evensen, Ø., & Karunasagar, I. (2016). Aeromonas hydrophila OmpW PLGA nanoparticle oral vaccine shows a dose-dependent protective immunity in rohu (Labeo rohita). Vaccines, 4, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Behera, T., & Swain, P. (2013). Alginate–chitosan–PLGA composite microspheres induce both innate and adaptive immune response through parenteral immunization in fish. Fish & shellfish immunology, 35, 785–791.

    Article  CAS  Google Scholar 

  37. Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of controlled release, 161, 505–522.

    Article  CAS  PubMed  Google Scholar 

  38. Estey, T., Kang, J., Schwendeman, S. P., & Carpenter, J. F. (2006). BSA degradation under acidic conditions: A model for protein instability during release from PLGA delivery systems. Journal of pharmaceutical sciences, 95, 1626–1639.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Department of Science and Technology (DST), Government of India, through the Indo-Norway joint project (INT/NOR/RCN/BIO/P-01/2018).

Author information

Authors and Affiliations

Authors

Contributions

MH performed experiments, interpreted the results, analyzed the data, and wrote the first draft. RD and SD performed supporting experiments. USA designed the nanoparticle experiments, supervised, and reviewed the manuscript. SD analyzed the data and helped with the discussion, AC, HMM and IK supervised, and reviewed the final manuscript. BM conceptualized, designed the experiments, supervised, provided funds and resources, and reviewed the manuscript.

Corresponding author

Correspondence to Biswajit Maiti.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Institutional Review Board Statement

The biosafety approval was taken from the institutional biosafety committee (IBSC), Nitte (Deemed to be University).

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshitha, M., D’souza, R., Disha, S. et al. Polylactic-Co-glycolic Acid Polymer-Based Nano-Encapsulation Using Recombinant Maltoporin of Aeromonas hydrophila as Potential Vaccine Candidate. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01117-6

Keywords

Navigation