Skip to main content
Log in

DNA Barcoding of Invasive Terrestrial Plant Species in India

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Invasive plants are known to cause biodiversity loss and pose a major risk to human health and environment. Identification of invasive plants and distinguishing them from native species has been relied on morphological examination. Stringent requirement of floral characters and decreasing number of expert taxonomists are making conventional morphology-based identification system tedious and resource-intensive. DNA barcoding may help in quick identification of invasive species if distinct sequence divergence pattern at various taxonomic levels is observed. The present work evaluates the utility of four molecular markers; rbcL, matK, their combination (rbcL + matK), and psbA-trnH for identification of 37 invasive plant species from India and also in distinguishing them from 97 native species. A psbA-trnH locus was found to be of restricted utility in this work as it was represented by the members of a single family. A hierarchical increase in K2P mean divergence across different taxonomic levels was found to be the maximum for matK alone followed by rbcL + matK and rbcL alone, respectively. NJ clustering analysis, however, confirmed the suitability of combined locus (rbcL + matK) over individual rbcL and matK as the DNA barcode. RbcL showed the lowest resolution power among the three markers studied. MatK exhibited much better performance compared to rbcL alone in identifying most of the species accurately although it failed to show monophyly of genus Dinebra. Two families; Asteraceae and Poaceae, remained polyphyletic in the trees constructed by all three markers. Combined locus (rbcL + matK) was found to be the most suitable marker as it raised the resolution power of both the markers and could identify more than 90% of genera correctly. Phylogenetic tree constructed by Maximum-Parsimony method using combined locus as a molecular marker exhibited the best resolution, thus, supporting the significance of two-locus combination of rbcL + matK for barcoding invasive plant species from India. Present study contributes to the global barcode data of invasive plant species by adding fifty-one new sequences to it. Effective barcoding of additional number of native as well as invasive plant species from India is possible using this dual locus if it is combined with one or more new molecular plastid markers. Expansion of barcode database with a focus on barcode performance optimisation to improve discrimination ability at species level can be undertaken in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hejda, M., Pyšek, P., & Jarošík, V. (2009). Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology., 97, 393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x

    Article  Google Scholar 

  2. Kumar Rai, P., & Singh, J. S. (2020). Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2019.106020

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shuvar, I., Korpita, H., Shuvar, A., Shuvar, B., & Kropyvnytskyi, R. (2021). Invasive plant species and the consequences of its prevalence in biodiversity. BIO Web of Conferences. https://doi.org/10.1051/bioconf/20213100024

    Article  Google Scholar 

  4. Walker, L. R., & Smith, S. D. (1997). Impacts of invasive plants on community and ecosystem properties. In J. O. Luken & J. W. Thieret (Eds.), Assessment and management of plant invasions. Springer.

    Google Scholar 

  5. Kacheche, R., & Mzuza, M. (2021). Environmental impacts of invasive alien plant species on the biodiversity of the nyika national park, Rumphi District. Malawi. American Journal of Plant Sciences., 12, 1503–1514. https://doi.org/10.4236/ajps.2021.1210106

    Article  Google Scholar 

  6. Meyer, S. E., Callaham, M. A., Stewart, J. E., & Warren, S. D. (2021). Invasive species response to natural and anthropogenic disturbance. In T. M. Poland, T. Patel-Weynand, D. M. Finch, C. F. Miniat, D. C. Hayes, & V. M. Lopez (Eds.), Invasive species in forests and rangelands of the United States. Springer.

    Google Scholar 

  7. Orbán, I., Szitár, K., Kalapos, T., & Körel-Dulay, G. (2021). The role of disturbance in invasive plant establishment in a changing climate: Insights from a drought experiment. Biological Invasions, 23, 1877–1890. https://doi.org/10.1007/s10530-021-02478-8

    Article  Google Scholar 

  8. Vedder, D., Leidinger, L., & Sarmento, C. J. (2021). Propagule pressure and an invasion syndrome determine invasion success in a plant community model. Ecology and Evolution., 11, 17106–17116. https://doi.org/10.1002/ece3.8348

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wise, M. (2017). A field investigation into the effects of anthropogenic disturbances on biodiversity and alien invasions of plant communities. Bioscene, 43(2), 3–14.

    Google Scholar 

  10. Wen-Hua, Y., Cui-Min, H., Long-Xiang, F., & Dao-Lin, D. (2016). Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides,. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00568

    Article  Google Scholar 

  11. Johnston, E. L., Piola, R. F., & Clark, G. F. (2009). The role of propagule pressure in invasion success. In G. Rilov & J. A. Crooks (Eds.), Biological invasions in marine ecosystems ecological studies. Springer.

    Google Scholar 

  12. Linders, T. E. W., Schaffner, U., Eschen, R., Abebe, A., Choge, S. K., Nigatu, L., Mbaabu, P. R., Shiferaw, H., & Allan, E. (2019). Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. Journal of Ecology, 107(6), 2660–2672. https://doi.org/10.1111/1365-2745.13268

    Article  Google Scholar 

  13. Skočajić, D., & Nešić, M. (2020). Invasive species: Routes of introduction, establishment, and expansion. In W. Leal Filho, A. Azul, L. Brandli, P. Özuyar, & T. Wall (Eds.), Life on land. encyclopedia of the UN sustainable development goals. Springer.

    Google Scholar 

  14. Bennett, A. E., Thomsen, M., & Strauss, S. Y. (2011). Multiple mechanisms enable invasive species to suppress native species. American Journal of Botany, 98(7), 1086–1094. https://doi.org/10.3732/ajb.1000177

    Article  PubMed  Google Scholar 

  15. Uddin, M. N., Robinson, R. W., Caridi, D., & Al Harun, M. A. (2014). Suppression of native Melaleuca ericifolia by the invasive Phragmites australis through allelopathic root exudates. American Journal of Botany, 101(3), 479–487. https://doi.org/10.3732/ajb.1400021

    Article  PubMed  Google Scholar 

  16. Dawkins, K., Mendonca, J., Sutherland, O., & Esiobu, N. (2022). A systematic review of terrestrial plant invasion mechanisms mediated by microbes and restoration implications. American Journal of Plant Sciences, 13, 205–222. https://doi.org/10.4236/ajps.2022.132013

    Article  CAS  Google Scholar 

  17. Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  18. Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology. https://doi.org/10.1371/journal.pbio.0020312

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hubert, N., Hanner, R., Holm, E., Mandrak, N. E., Taylor, E., Burridge, M., Watkinson, D., Dumont, P., Curry, A., Bentzen, P., Zhang, J., April, J., & Bernatchez, L. (2008). Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE. https://doi.org/10.1371/journal.pone.0002490

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, W., Wu, Y., Yan, Y., Ermakova, M., Kerstetter, R., & Messing, J. (2010). DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biology, 16(10), 205. https://doi.org/10.1186/1471-2229-10-205

    Article  CAS  Google Scholar 

  21. Xu, S. Z., Li, Z. Y., & Jin, X. H. (2018). DNA barcoding of invasive plants in China: A resource for identifying invasive plants. Molecular Ecology Resources, 18(1), 128–136. https://doi.org/10.1111/1755-0998.12715

    Article  CAS  PubMed  Google Scholar 

  22. Wang, A., Gopurenko, D., Wu, H., & Lepschi, B. (2017). Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia. PLoS ONE, 12(4), e0175338. https://doi.org/10.1371/journal.pone.0175338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang A, Gopurenko D, Wu H, Stanton R, Lepschi B.(2014) DNA barcoding for identification of exotic grass species present in eastern Australia. In: Proceedings of the 19th Australasian Weeds Conference—Science, Community and Food Security: the Weed Challenge. At: Hobart, Tasmania, Australia. 2014 Sept, pp. 444–447.

  24. Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., van der Bank, M., Chase, M. W., Cowan, R. S., Erickson, D. L., Fazekas, A. J., Graham, S. W., James, K. E., Kim, K.-J., Kress, W. J., Schneider, H., van AlphenStahl, J., Barrett, S. C. H., van den Berg, C., Bogarin, D., … Hollingsworth, M. L. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794–12797. https://doi.org/10.1073/pnas.0905845106

    Article  Google Scholar 

  25. Jamdade, R., Mosa, K. A., El-Keblawy, A., Al Shaer, K., Al Harthi, E., Al Sallani, M., Al Jasmi, M., Gairola, S., Shabana, H., & Mahmoud, T. (2022). DNA barcodes for accurate identification of selected medicinal plants (Caryophyllales): Toward barcoding flowering plants of the United Arab emirates. Diversity, 14(4), 262. https://doi.org/10.3390/d14040262

    Article  CAS  Google Scholar 

  26. Yu, J., Wu, X., Liu, C., Newmaster, S., Ragupathy, S., & Kress, J. W. (2021). Progress in the use of DNA barcodes in the identification and classification of medicinal plants. Ecotoxicology and Environmental Safety., 208, 111691. https://doi.org/10.1016/j.ecoenv.2020.111691.ISSN0147-6513

    Article  CAS  PubMed  Google Scholar 

  27. Safhi, F. A., Alshamrani, S. M., Bogmaza, A. F. M., & El-Moneim, D. A. (2023). DNA barcoding of wild plants with potential medicinal properties from faifa mountains in Saudi Arabia. Genes (Basel)., 14(2), 469. https://doi.org/10.3390/genes14020469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pathak, M., Mohamed, A., & Farooq, M. (2018). DNA barcoding and identification of medicinal plants in the Kingdom of Bahrain. American Journal of Plant Sciences., 9, 2757–2774. https://doi.org/10.4236/ajps.2018.913200

    Article  CAS  Google Scholar 

  29. Duan, H., Wang, W., Zeng, Y., Guo, M., & Zhou, Y. (2019). The screening and identification of DNA barcode sequences for Rehmannia. Science and Reports, 9, 17295. https://doi.org/10.1038/s41598-019-53752-8

    Article  ADS  CAS  Google Scholar 

  30. Raskoti, B. B., & Ale, R. (2021). DNA barcoding of medicinal orchids in Asia. Science and Reports, 11, 23651. https://doi.org/10.1038/s41598-021-03025-0

    Article  ADS  CAS  Google Scholar 

  31. Thitikornpong, W., Palanuvej, C., & Ruangrungsi, N. (2018). DNA barcoding for authentication of the endangered plants in genus Aquilaria. The Thai Journal of Pharmaceutical Sciences., 42(4), 7.

    Google Scholar 

  32. Mishra, P., Kumar, A., Sivaraman, G., Shukla, A. K., Kaliamoorthy, R., Slater, A., & Velusamy, S. (2017). Character-based DNA barcoding for authentication and conservation of IUCN red listed threatened species of genus Decalepis (Apocynaceae). Science and Reports, 7, 14910. https://doi.org/10.1038/s41598-017-14887-8

    Article  ADS  CAS  Google Scholar 

  33. Gogoi, B., Wann, S. B., & Saikia, S. P. (2020). DNA barcodes for delineating Clerodendrum species of North East India. Science and Reports, 10, 13490. https://doi.org/10.1038/s41598-020-70405-3

    Article  ADS  CAS  Google Scholar 

  34. Parveen, I., Singh, H. K., Raghuvanshi, S., Pradhan, U. C., & Babbar, S. B. (2012). DNA barcoding of endangered Indian Paphiopedilum species. Molecular Ecology Resources, 12(1), 82–90. https://doi.org/10.1111/j.1755-0998.2011.03071.x

    Article  CAS  PubMed  Google Scholar 

  35. Reddy CS, Bagyanarayana G, Reddy KN, Vatsavaya SR.(2008) Invasive Alien Flora of India. National biological information infrastructure, US Geological Survey, USA. 2008 Jan 12.

  36. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  37. http://technelysium.com.au/wp/chromas

  38. Hall, T. A. (1999). Bioedit: A user-friendly biological sequence alignment editor and analysis programme for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  39. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bethesda (2004) , Nucleotide [Internet], National Library of Medicine (US), National Center for Biotechnology Information, Retrived from: https://www.ncbi.nlm.nih.gov/nuccore/

  41. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software. https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  42. Campitelli E. (2023) ggnewscale: Multiple Fill and Colour Scales in 'ggplot2'. R package version 0.4.9. https://CRAN.R-project.org/package=ggnewscale.

  43. Guangchuang, Y., Smith, D., Zhu, H., Guan, Y., & Lam, T.T.-Y. (2017). Ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12628

    Article  Google Scholar 

  44. Kassambara A. (2023) ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.6.0. https://CRAN.R-project.org/package=ggpubr.

  45. Mills BR. (2022) MetBrewer: Color Palettes Inspired by Works at the Metropolitan Museum of Art. R package version 0.2.0. https://CRAN.R-project.org/package=MetBrewer.

  46. Wickham H, Bryan J. (2022) readxl: Read Excel Files. R package version 1.4.2. https://CRAN.R-project.org/package=readxl.

  47. Hadley, W. (2007). Reshaping data with the reshape package. Journal of Statistical Software, 21(12), 1–20.

    ADS  Google Scholar 

  48. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org

  49. McKinney, W. (2010).  Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference. https://doi.org/10.25080/Majora-92bf1922-00a

    Article  Google Scholar 

  50. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with numPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Van Rossum G, Drake FL. (2009) Python 3 Reference Manual. Scotts Valley, CA: CreateSpace

  52. Ushey K, Allaire J, Tang Y. (2023) Reticulate: Interface to 'Python'. R package version 1.29, https://CRAN.R-project.org/package=reticulate.

  53. Paradis, E., & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633

    Article  CAS  PubMed  Google Scholar 

  54. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution., 16, 111–120.

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R. Bioinformatics, 27(4), 592–593.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  56. Feng, S., Jiao, K., Zhu, Y., Wang, H., Jiang, M., & Wang, H. (2018). Molecular identification of species of Physalis (Solanaceae) using a candidate DNA barcode: The chloroplast psbA-trnH intergenic region. Genome, 61, 15–20.

    Article  CAS  PubMed  Google Scholar 

  57. Chen, J., Zhao, J., Erickson, D. L., Xia, N., & Kress, W. J. (2015). Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China. Molecular Ecology Resources., 15, 337–348.

    Article  PubMed  Google Scholar 

  58. Liu, J., Shi, L., Han, J., Li, G., Lu, H., Hou, J., Downie, S. R. (20 14). Identification of species in the angiosperm family Apiaceae using DNA barcodes. Molecular Ecology Resources, 14(6), 1231–1238. https://doi.org/10.1111/1755-0998.12262

    Article  CAS  PubMed  Google Scholar 

  59. Yang, J. B., Wang, Y. P., Moeller, M., Gao, L. M., & Wu, D. (2012). Applying plant DNA barcodes to identify species of Parnassia (Parnassiaceae). Molecular Ecology Resources, 12, 267–275.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, C. Y., Wang, F. Y., Yan, H. F., Hao, G., Hu, C. M., & Ge, X. J. (2012). Testing DNA barcoding in closely related groups of Lysima- chia L. (Myrsinaceae). Molecular Ecology Resources, 12, 98–108.

    Article  PubMed  Google Scholar 

  61. Yan, L. J., Liu, J., & Mo€ller M, Zhang L, Zhang XM, Li DZ, Gao LM. (2015). DNA barcoding of Rhododendron (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the himalaya–heng-duan Mountains. Molecular Ecology Resources., 15, 932–944.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by ‘Seed Money’ grant from Deccan Education Society’s Fergusson College (Autonomous), Pune (Project number 12-2022). We are grateful to Dr. Shrikant S. Ranade, Chairman, IMT Technologies, Pune for his generous donation to Fergusson College which helped immensely to this work. Authors thank Prof. Milind Sardesai from Department of Botany, Savitribai Phule Pune University, Pune for his help in identification of plants species. We appreciate Dr. Dheeraj Dhotre, Mr. Gaurang Gowande, Monica Joshi and our undergraduate students Falguni, Mahek, Akash, and Vaishnavi for their help in bioinformatics work. We thank Dr. Aditya Ambade from Shrewsbury, Massachusetts, USA for critical proofreading of this manuscript. We are indebted to the Head of Biotechnology Department and authorities of Fergusson College for facilities and encouragement. Lastly, we thank the reviewers for providing unbiased and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Tembe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lonare, N., Patil, G., Waghmare, S. et al. DNA Barcoding of Invasive Terrestrial Plant Species in India. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01102-z

Keywords

Navigation