Skip to main content

Advertisement

Log in

The Future of Gene Therapy: A Review of In Vivo and Ex Vivo Delivery Methods for Genome Editing-Based Therapies

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The development of gene therapy based on genome editing has opened up new possibilities for the treatment of human genetic disorders. This field has developed rapidly over the past few decades, some genome editing-based therapies are already in phase 3 clinical trials. However, there are several challenges to be addressed before widespread adoption of gene editing therapy becomes possible. The main obstacles in the development of such therapy are safety and efficiency, so one of the biggest issues is the delivery of genetic constructs to patient cells. Approaches in genetic cargo delivery divide into ex vivo and in vivo, which are suitable for different cases. The ex vivo approach is mainly used to edit blood cells, improve cancer therapy, and treat infectious diseases. To edit cells in organs researches choose in vivo approach. For each approach, there is a fairly large set of methods, but, unfortunately, these methods are not universal in their effectiveness and safety. The focus of this article is to discuss the current status of in vivo and ex vivo delivery methods used in genome editing-based therapy. We will discuss the main methods employed in these approaches and their applications in current gene editing treatments under development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Center for Biologics Evaluation and Research. (2020). What is gene therapy? FDA. Retrieved from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/what-gene-therapy

  2. Shahryari, A., Saghaeian Jazi, M., Mohammadi, S., Razavi Nikoo, H., Nazari, Z., Hosseini, E. S., et al. (2019). Development and clinical translation of approved gene therapy products for genetic disorders. Frontiers in Genetics, 10, 868. https://doi.org/10.3389/fgene.2019.00868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gowing, G., Svendsen, S., & Svendsen, C. N. (2017). Ex vivo gene therapy for the treatment of neurological disorders. Progress in Brain Research, 230, 99–132. https://doi.org/10.1016/bs.pbr.2016.11.003

    Article  PubMed  Google Scholar 

  4. Mendell, J. R., Al-Zaidy, S. A., Rodino-Klapac, L. R., Goodspeed, K., Gray, S. J., Kay, C. N., et al. (2021). Current clinical applications of in vivo gene therapy with AAVs. Molecular Therapy: The Journal of the American Society of Gene Therapy, 29(2), 464–488. https://doi.org/10.1016/j.ymthe.2020.12.007

    Article  CAS  PubMed  Google Scholar 

  5. Liu, M., Rehman, S., Tang, X., Gu, K., Fan, Q., Chen, D., & Ma, W. (2019). Methodologies for improving HDR efficiency. Frontiers in Genetics, 9, 691. https://doi.org/10.3389/fgene.2018.00691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kantor, A., McClements, M. E., & MacLaren, R. E. (2020). CRISPR-Cas9 DNA base-editing and prime-editing. International Journal of Molecular Sciences, 21(17), 6240. https://doi.org/10.3390/ijms21176240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saha, S. K., Saikot, F. K., Rahman, Md. S., Jamal, M. A. H. M., Rahman, S. M. K., Islam, S. M. R., & Kim, K.-H. (2018). Programmable molecular scissors: Applications of a new tool for genome editing in biotech. Molecular Therapy. Nucleic Acids, 14, 212–238. https://doi.org/10.1016/j.omtn.2018.11.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silva, G., Poirot, L., Galetto, R., Smith, J., Montoya, G., Duchateau, P., & Pâques, F. (2011). Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy. Current Gene Therapy, 11(1), 11–27. https://doi.org/10.2174/156652311794520111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, Y. G., Cha, J., & Chandrasegaran, S. (1996). Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 93(3), 1156–1160. https://doi.org/10.1073/pnas.93.3.1156

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Sakuma, T., & Yamamoto, T. (2023). Updated overview of TALEN construction systems. Methods in Molecular Biology (Clifton, N.J.), 2637, 27–39. https://doi.org/10.1007/978-1-0716-3016-7_2

  11. Jiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505–529. https://doi.org/10.1146/annurev-biophys-062215-010822

    Article  CAS  PubMed  Google Scholar 

  12. Liu, G., Lin, Q., Jin, S., & Gao, C. (2022). The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 82(2), 333–347. https://doi.org/10.1016/j.molcel.2021.12.002

    Article  CAS  PubMed  Google Scholar 

  13. Morgan, M. A., Galla, M., Grez, M., Fehse, B., & Schambach, A. (2021). Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Therapy, 28(9), 494–512. https://doi.org/10.1038/s41434-021-00237-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Themis, M., Forbes, S. J., Chan, L., Cooper, R. G., Etheridge, C. J., Miller, A. D., et al. (1998). Enhanced in vitro and in vivo gene delivery using cationic agent complexed retrovirus vectors. Gene Therapy, 5(9), 1180–1186. https://doi.org/10.1038/sj.gt.3300715

    Article  CAS  PubMed  Google Scholar 

  15. Nienhuis, A. W., Dunbar, C. E., & Sorrentino, B. P. (2006). Genotoxicity of retroviral integration in hematopoietic cells. Molecular Therapy: The Journal of the American Society of Gene Therapy, 13(6), 1031–1049. https://doi.org/10.1016/j.ymthe.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  16. Carter, M., & Shieh, J. (2015). Chapter 11 – Gene delivery strategies. In M. Carter & J. Shieh (Eds.), Guide to research techniques in neuroscience (Second Edition) (pp. 239–252). Academic Press. https://doi.org/10.1016/B978-0-12-800511-8.00011-3

  17. Dong, W., & Kantor, B. (2021). Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: Current state and perspectives. Viruses, 13(7), 1288. https://doi.org/10.3390/v13071288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loewen, N., & Poeschla, E. M. (2005). Lentiviral vectors. Advances in Biochemical Engineering/Biotechnology, 99, 169–191. https://doi.org/10.1007/10_007

    Article  CAS  PubMed  Google Scholar 

  19. Wold, W. S. M., & Toth, K. (2013). Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Current Gene Therapy, 13(6), 421–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Syyam, A., Nawaz, A., Ijaz, A., Sajjad, U., Fazil, A., Irfan, S., et al. (2022). Adenovirus vector system: Construction, history and therapeutic applications. BioTechniques, 73(6), 297–305. https://doi.org/10.2144/btn-2022-0051

    Article  CAS  PubMed  Google Scholar 

  21. Pupo, A., Fernández, A., Low, S. H., François, A., Suárez-Amarán, L., & Samulski, R. J. (2022). AAV vectors: The Rubik’s cube of human gene therapy. Molecular Therapy: The Journal of the American Society of Gene Therapy, 30(12), 3515–3541. https://doi.org/10.1016/j.ymthe.2022.09.015

    Article  CAS  PubMed  Google Scholar 

  22. Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257. https://doi.org/10.1080/10717544.2018.1474964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gehl, J. (2003). Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica, 177(4), 437–447. https://doi.org/10.1046/j.1365-201X.2003.01093.x

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, R. E., & Zahid, M. (2020). Cell penetrating peptides. Novel Vectors for Gene Therapy. Pharmaceutics, 12(3), 225. https://doi.org/10.3390/pharmaceutics12030225

    Article  CAS  PubMed  Google Scholar 

  25. Liu, J., Gaj, T., Patterson, J. T., Sirk, S. J., & Barbas, C. F. (2014). Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS ONE, 9(1), e85755. https://doi.org/10.1371/journal.pone.0085755

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Wahane, A., Waghmode, A., Kapphahn, A., Dhuri, K., Gupta, A., & Bahal, R. (2020). Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules, 25(12), 2866. https://doi.org/10.3390/molecules25122866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kazemian, P., Yu, S.-Y., Thomson, S. B., Birkenshaw, A., Leavitt, B. R., & Ross, C. J. D. (2022). Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Molecular Pharmaceutics, 19(6), 1669–1686. https://doi.org/10.1021/acs.molpharmaceut.1c00916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duan, L., Ouyang, K., Xu, X., Xu, L., Wen, C., Zhou, X., et al. (2021). Nanoparticle delivery of CRISPR/Cas9 for genome editing. Frontiers in Genetics, 12, 673286. https://doi.org/10.3389/fgene.2021.673286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun, W., Lu, Y., & Gu, Z. (2015). Rolling circle replication for engineering drug delivery carriers. Therapeutic Delivery, 6(7), 765–768. https://doi.org/10.4155/tde.15.27

    Article  CAS  PubMed  Google Scholar 

  30. Sun, W., Ji, W., Hall, J. M., Hu, Q., Wang, C., Beisel, C. L., & Gu, Z. (2015). Efficient delivery of CRISPR-Cas9 for genome editing via self-assembled DNA nanoclews. Angewandte Chemie (International ed. in English), 54(41), 12029–12033. https://doi.org/10.1002/anie.201506030

  31. Ex Vivo & In Vivo Gene Therapy Techniques. (n.d.). Retrieved August 25, 2023, from https://www.thegenehome.com/how-does-gene-therapy-work/techniques

  32. Worgall, S., & Crystal, R. G. (2020). Chapter 28 – Gene therapy. In R. Lanza, R. Langer, J. P. Vacanti, & A. Atala (Eds.), Principles of tissue engineering (Fifth Edition) (pp. 493–518). Academic Press. https://doi.org/10.1016/B978-0-12-818422-6.00029-0

  33. Maier, D. A., Brennan, A. L., Jiang, S., Binder-Scholl, G. K., Lee, G., Plesa, G., et al. (2013). Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Human Gene Therapy, 24(3), 245–258. https://doi.org/10.1089/hum.2012.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tebas, P., Jadlowsky, J. K., Shaw, P. A., Tian, L., Esparza, E., Brennan, A. L. et al. (n.d.). CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. The Journal of Clinical Investigation, 131(7), e144486. https://doi.org/10.1172/JCI144486

  35. Labanieh, L., Majzner, R. G., & Mackall, C. L. (2018). Programming CAR-T cells to kill cancer. Nature Biomedical Engineering, 2(6), 377–391. https://doi.org/10.1038/s41551-018-0235-9

    Article  CAS  PubMed  Google Scholar 

  36. Ramachandran, V., Kolli, S. S., & Strowd, L. C. (2019). Review of graft-versus-host disease. Dermatologic Clinics, 37(4), 569–582. https://doi.org/10.1016/j.det.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  37. allo-20191231. (n.d.). Retrieved August 25, 2023, from https://www.sec.gov/Archives/edgar/data/1737287/000173728720000012/allo-20191231.htm

  38. FDA Lifts Clinical Hold on MELANI-01 Study evaluating cellectis’ product candidate UCARTCS1 in multiple myeloma | cellectis. (n.d.). Retrieved August 25, 2023, from https://www.cellectis.com/en/press/fda-lifts-clinical-hold-on-melani-01-study-evaluating-cellectis-product-candidate-ucartcs1-in-multiple-myeloma

  39. Sugita, M., Galetto, R., Zong, H., Ewing-Crystal, N., Trujillo-Alonso, V., Mencia-Trinchant, N., et al. (2022). Allogeneic TCRαβ deficient CAR T-cells targeting CD123 in acute myeloid leukemia. Nature Communications, 13, 2227. https://doi.org/10.1038/s41467-022-29668-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. MacLeod, D. T., Antony, J., Martin, A. J., Moser, R. J., Hekele, A., Wetzel, K. J., et al. (2017). Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Molecular Therapy: The Journal of the American Society of Gene Therapy, 25(4), 949–961. https://doi.org/10.1016/j.ymthe.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  41. McCreedy, B. J., Senyukov, V. V., & Nguyen, K. T. (2018). Off the shelf T cell therapies for hematologic malignancies. Best Practice & Research. Clinical Haematology, 31(2), 166–175. https://doi.org/10.1016/j.beha.2018.03.001

    Article  Google Scholar 

  42. Jacobson, C. A., Herrera, A. F., Budde, L. E., DeAngelo, D. J., Heery, C., Stein, A., et al. (2019). Initial findings of the phase 1 trial of PBCAR0191, a CD19 targeted allogeneic CAR-T cell therapy. Blood, 134(Supplement_1), 4107. https://doi.org/10.1182/blood-2019-128203

  43. Huang, C., Li, Q., & Li, J. (2022). Site-specific genome editing in treatment of inherited diseases: Possibility, progress, and perspectives. Medical Review, 2(5), 471–500. https://doi.org/10.1515/mr-2022-0029

    Article  PubMed  PubMed Central  Google Scholar 

  44. Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y.-S., Domm, J., Eustace, B. K., et al. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. The New England Journal of Medicine, 384(3), 252–260. https://doi.org/10.1056/NEJMoa2031054

    Article  CAS  PubMed  Google Scholar 

  45. Abstract Details | ASGCT Annual Meeting. (n.d.). Retrieved August 25, 2023, from https://annualmeeting.asgct.org/abstracts/abstract-details?abstractId=14541

  46. Fang, R., Yuan, P., Yu, L., Yang, H., Liu, J., Shi, J., et al. (2019). Manufacturing scale-up and preclinical development of ET-01, autologous CD34+ cells with the BCL11A erythroid enhancer. Edited By CRISPR/Cas9, for Patients with β-Thalassemia Major. Blood, 134(Supplement_1), 965. https://doi.org/10.1182/blood-2019-126499

  47. UC consortium launches first clinical trial u | EurekAlert! (n.d.). Retrieved August 25, 2023, from https://www.eurekalert.org/news-releases/689894

  48. Xu, L., Wang, J., Liu, Y., Xie, L., Su, B., Mou, D., et al. (2019). CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. The New England Journal of Medicine, 381(13), 1240–1247. https://doi.org/10.1056/NEJMoa1817426

    Article  CAS  PubMed  Google Scholar 

  49. Cossette, D., Aiyer, S., Kimball, C., Luby, C., Zarate, J., Eng, J., et al. (2021). Clinical-scale production and characterization of Ntla-5001 – A novel approach to manufacturing CRISPR/Cas9 engineered T cell therapies. Blood, 138, 3881. https://doi.org/10.1182/blood-2021-153775

    Article  Google Scholar 

  50. Wang, Z., Li, N., Feng, K., Chen, M., Zhang, Y., Liu, Y., et al. (2021). Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cellular and Molecular Immunology, 18(9), 2188–2198. https://doi.org/10.1038/s41423-021-00749-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harmatz, P., Prada, C. E., Burton, B. K., Lau, H., Kessler, C. M., Cao, L., et al. (2022). First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Molecular Therapy, 30(12), 3587–3600. https://doi.org/10.1016/j.ymthe.2022.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Editas Medicine Announces Clinical Data Demonstrating Proof of Concept of EDIT-101 from Phase 1/2 BRILLIANCE Trial | Editas Medicine. (n.d.). Retrieved August 25, 2023, from https://ir.editasmedicine.com/news-releases/news-release-details/editas-medicine-announces-clinical-data-demonstrating-proof

  53. Gillmore, J. D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M. L., et al. (2021). CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. The New England Journal of Medicine, 385(6), 493–502. https://doi.org/10.1056/NEJMoa2107454

    Article  CAS  PubMed  Google Scholar 

  54. Intellia Therapeutics Presents New Interim Data from First-in-Human Study of NTLA-2002 for the Treatment of Hereditary Angioedema (HAE) at the American College of Allergy, Asthma & Immunology 2022 Annual Scientific Meeting - Intellia Therapeutics. (n.d.). Retrieved August 25, 2023, from https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-presents-new-interim-data-first-human

  55. Chen, Z., Ling, L., Shi, X., Li, W., Zhai, H., Kang, Z., et al. (2021). Microinjection of antisense oligonucleotides into living mouse testis enables lncRNA function study. Cell & Bioscience, 11(1), 213. https://doi.org/10.1186/s13578-021-00717-y

    Article  CAS  Google Scholar 

  56. Shen, X., Beasley, S., Putman, J. N., Li, Y., Prakash, T. P., Rigo, F., et al. (2019). Efficient electroporation of neuronal cells using synthetic oligonucleotides: identifying duplex RNA and antisense oligonucleotide activators of human frataxin expression. RNA, 25(9), 1118–1129. https://doi.org/10.1261/rna.071290.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roberts, T. C., Langer, R., & Wood, M. J. A. (2020). Advances in oligonucleotide drug delivery. Nature Reviews. Drug Discovery, 19(10), 673–694. https://doi.org/10.1038/s41573-020-0075-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, S., Wang, D., Sun, Y., & Zheng, B. (2019). Delivery of antisense oligonucleotide using polyethylenimine-based lipid nanoparticle modified with cell penetrating peptide. Drug Delivery, 26(1), 965–974. https://doi.org/10.1080/10717544.2019.1667453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ding, Y., Jiang, Z., Saha, K., Kim, C. S., Kim, S. T., Landis, R. F., & Rotello, V. M. (2014). Gold nanoparticles for nucleic acid delivery. Molecular Therapy: The Journal of the American Society of Gene Therapy, 22(6), 1075–1083. https://doi.org/10.1038/mt.2014.30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the figures were created with BioRender.com

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Volodina.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodina, O., Smirnikhina, S. The Future of Gene Therapy: A Review of In Vivo and Ex Vivo Delivery Methods for Genome Editing-Based Therapies. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01070-4

Keywords

Navigation