Skip to main content
Log in

Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

NMD:

Nonsense-mediated mRNA decay

PTC:

Premature termination codons

PABPC1:

PolyA-binding protein C1

UPF:

Up-frameshift protein

EJC:

Exon junction complexes

3′UTR:

3′ Untranslated regions

SMG:

Suppressor of Morphogenesis in Genitalia

ORF:

Open reading frame

UPF1LL:

UPF1’s long loop

MIF4G-3:

Middle domain of eukaryotic initiation factor 4G (eIF4G)

RRM:

RNA Recognition Motif

EBM:

EJC-binding motif

RBM8A:

RNA-binding protein 8A

CASC3:

Cancer susceptibility candidate gene 3

RNPS1:

RNA-binding protein with serine-rich domain 1

DECID:

Decay-inducing complex

SR proteins:

Serine and arginine-rich proteins

mRNPs:

MRNA molecules with ribonucleoproteins

References

  1. Mendell, J. T., Sharifi, N. A., Meyers, J. L., Martinez-Murillo, F., & Dietz, H. C. (2004). Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nature genetics, 36(10), 1073–1078.

    Article  CAS  PubMed  Google Scholar 

  2. Wittmann, J., Hol, E. M., & Jäck, H. M. (2006). hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay. Molecular and cellular biology, 26(4), 1272–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hwang, H. J., Park, Y., & Kim, Y. K. (2021). UPF1: From mRNA surveillance to protein quality control. Biomedicines, 9(8), 995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karousis, E. D., Nasif, S., & Mühlemann, O. (2016). Nonsense-mediated mRNA decay: Novel mechanistic insights and biological impact. Wiley Interdisciplinary Reviews: RNA, 7(5), 661–682.

    Article  CAS  PubMed  Google Scholar 

  5. Nogueira, G., Fernandes, R., García-Moreno, J. F., & Romão, L. (2021). Nonsense-mediated RNA decay and its bipolar function in cancer. Molecular Cancer, 20(1), 1–19.

    Article  Google Scholar 

  6. Popp, M. W., & Maquat, L. E. (2018). Nonsense-mediated mRNA decay and cancer. Current Opinion in Genetics & Development, 48, 44–50.

    Article  CAS  Google Scholar 

  7. Ishigaki, Y., Li, X., Serin, G., & Maquat, L. E. (2001). Evidence for a pioneer round of mRNA translation: MRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell, 106(5), 607–617.

    Article  CAS  PubMed  Google Scholar 

  8. Eberle, A. B., Lykke-Andersen, S., Mühlemann, O., & Jensen, T. H. (2009). SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nature Structural & Molecular Biology, 16(1), 49–55.

    Article  CAS  Google Scholar 

  9. Huntzinger, E., Kashima, I., Fauser, M., Saulière, J., & Izaurralde, E. (2008). SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA, 14(12), 2609–2617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patro, I., Sahoo, A., Nayak, B. R., Das, R., Majumder, S., & Panigrahi, G. K. (2023). Nonsense-mediated mRNA decay: Mechanistic insights and physiological significance. Molecular Biotechnology. https://doi.org/10.1007/s12033-023-00927-4

    Article  PubMed  Google Scholar 

  11. Buhler, M., Steiner, S., Mohn, F., Paillusson, A., & Muhlemann, O. (2006). EJC-independent degradation of nonsense immunoglobulin-mumRNA depends on 3′ UTR length. Nature Structural & Molecular Biology, 13, 462–464.

    Article  Google Scholar 

  12. Singh, G., Rebbapragada, I., & Lykke-Andersen, J. (2008). A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biology, 6(4), e111.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Medghalchi, S. M., Frischmeyer, P. A., Mendell, J. T., Kelly, A. G., Lawler, A. M., & Dietz, H. C. (2001). Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Human Molecular Genetics, 10(2), 99–105.

    Article  CAS  PubMed  Google Scholar 

  14. Xie, N., Shen, G., Gao, W., Huang, Z., Huang, C., & Fu, L. (2023). Neoantigens: Promising targets for cancer therapy. Signal Transduction and Targeted Therapy, 8(1), 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wittkopp, N., Huntzinger, E., Weiler, C., Saulière, J., Schmidt, S., Sonawane, M., & Izaurralde, E. (2009). Nonsense-mediated mRNA decay effectors are essential for zebrafish embryonic development and survival. Molecular and Cellular Biology, 29(13), 3517–3528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Panigrahi, G. K., & Satapathy, K. B. (2020). Arabidopsis DCP5, a decapping complex protein interacts with Ubiquitin-5 in the processing bodies. Plant Archives, 20(1), 2243–2247.

    Google Scholar 

  17. Valcarce, D. G., Riesco, M. F., Cuesta-Martín, L., Esteve-Codina, A., Martínez-Vázquez, J. M., & Robles, V. (2023). Stress decreases spermatozoa quality and induces molecular alterations in zebrafish progeny. BMC Biology, 21(1), 1–20.

    Article  Google Scholar 

  18. Conti, E., & Izaurralde, E. (2005). Nonsense-mediated mRNA decay: Molecular insights and mechanistic variations across species. Current Opinion in Cell Biology, 17, 316–325.

    Article  CAS  PubMed  Google Scholar 

  19. Mühlemann, O. (2008). Recognition of nonsense mRNA: Towards a unified model. Biochemical Society Transactions, 36, 497–501.

    Article  PubMed  Google Scholar 

  20. He, F., & Jacobson, A. (2015). Nonsense-mediated mRNA decay: Degradation of defective transcripts is only part of the story. Annual Review of Genetics, 49, 339–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gehring, N. H., Kunz, J. B., Neu-Yilik, G., Breit, S., Viegas, M. H., Hentze, M. W., & Kulozik, A. E. (2005). Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Molecular Cell, 20(1), 65–75.

    Article  CAS  PubMed  Google Scholar 

  22. Tarpey, P., Raymond, F. L., Nguyen, L. S., Rodriguez, J., Hackett, A., Vandeleur, L., Smith, R., Shoubridge, C., Edkins, S., Stevens, C., O’Meara, S., Tofts, C., Barthorpe, S., Buck, G., Cole, J., Halliday, K., Hills, K., Jones, D. R., Mironenko, T., … Gécz, J. (2007). Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nature Genetics, 39(9), 1127–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bao, J., Vitting-Seerup, K., Waage, J., Tang, C., Ge, Y., Porse, B. T., & Yan, W. (2016). UPF2-dependent nonsense-mediated mRNA decay pathway is essential for spermatogenesis by selectively eliminating longer 3′UTR transcripts. PLoS Genetics, 12(5), e1005863.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ge, Z., Quek, B. L., Beemon, K. L., & Hogg, J. R. (2016). Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. eLife, 5, e11155.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Z., & Krainer, A. R. (2004). Involvement of SR proteins in mRNA surveillance. Molecular Cell, 16(4), 597–607.

    Article  CAS  PubMed  Google Scholar 

  26. Kurihara, Y., Makita, Y., Kawauchi, M., Kageyama, A., Kuriyama, T., & Matsui, M. (2022). Intergenic splicing-stimulated transcriptional readthrough is suppressed by nonsense-mediated mRNA decay in Arabidopsis. Communications Biology, 5, 1390. https://doi.org/10.1038/s42003-022-04348-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zünd, D., Gruber, A. R., Zavolan, M., & Mühlemann, O. (2013). Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. Nature Structural & Molecular Biology, 20(8), 936–943.

    Article  Google Scholar 

  28. Kurosaki, T., & Maquat, L. E. (2013). Rules that govern UPF1 binding to mRNA 3′ UTRs. Proceedings of the National Academy of Sciences, 110(9), 3357–3362.

    Article  ADS  CAS  Google Scholar 

  29. Hurt, J. A., Robertson, A. D., & Burge, C. B. (2013). Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Research, 23(10), 1636–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chakrabarti, S., Jayachandran, U., Bonneau, F., Fiorini, F., Basquin, C., Domcke, S., Hir, H. L., & Conti, E. (2011). Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Molecular Cell, 41(6), 693–703.

    Article  CAS  PubMed  Google Scholar 

  31. Kadlec, J., Guilligay, D., Ravelli, R. B., & Cusack, S. (2006). Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA, 12, 1817–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng, Z., Muhlrad, D., Lim, M. K., Parker, R., & Song, H. (2007). Structural and functional insights into the human Upf1 helicase core. EMBO Journal, 26, 253–264.

    Article  CAS  PubMed  Google Scholar 

  33. Clerici, M., Mourão, A., Gutsche, I., Gehring, N. H., Hentze, M. W., & Kulozik, A. (2009). Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. EMBO Journal, 28, 2293–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gowravaram, M., Bonneau, F., Kanaan, J., Maciej, V. D., Fiorini, F., & Raj, S. (2018). A conserved structural element in the RNA helicase UPF1 regulates its catalytic activity in an isoform-specific manner. Nucleic Acids Research, 46, 2648–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Durand, S., Franks, T. M., & Lykke-Andersen, J. (2016). Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nature Communications, 7, 12434.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Okada-Katsuhata, Y., Yamashita, A., Kutsuzawa, K., Izumi, N., Hirahara, F., & Ohno, S. (2012). N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Research, 40, 1251–1266.

    Article  CAS  PubMed  Google Scholar 

  37. Chakrabarti, S., Bonneau, F., Schüssler, S., Eppinger, E., & Conti, E. (2014). Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. Nucleic Acids Research, 42, 9447–9460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nicholson, P., Josi, C., Kurosawa, H., Yamashita, A., & Mühlemann, O. (2014). A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD. Nucleic Acids Research, 42, 9217–9235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng, Q., Jagannathan, S., & Bradley, R. K. (2017). The RNA surveillance factor UPF1 represses myogenesis via its E3 ubiquitin ligase activity. Molecular Cell, 67, 239-251.e236.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Joazeiro, C. A. P. (2019). Mechanisms and functions of ribosome-associated protein quality control. Nature Reviews Molecular Cell Biology, 20, 368–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Powers, K. T., Szeto, J. A., & Schaffitzel, C. (2020). New insights into no-go, non-stop and nonsense-mediated mRNA decay complexes. Current Opinion in Structural Biology, 65, 110–118.

    Article  CAS  PubMed  Google Scholar 

  42. Inglis, A.J., Guna, A., Merchán, Á.G, Pal, A., Esantsi, T.K., Keys, H.R. (2022). Coupled protein quality control during nonsense mediated mRNA decay. bioRxiv

  43. Chamieh, H., Ballut, L., Bonneau, F., & Le Hir, H. (2008). NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nature Structural & Molecular Biology, 15, 85–93.

    Article  CAS  Google Scholar 

  44. Xin, M. A., Yan, L. I., Chengyan, C. H. E. N., Yanmin, S. H. E. N., Hua, W. A. N. G., & Tangliang, L. I. (2023). Spatial expression of the nonsense-mediated mRNA decay factors UPF3A and UPF3B among mouse tissues. Journal of Zhejiang University. Science. B, 24(11), 1062.

    Article  Google Scholar 

  45. Kishor, A., Ge, Z., & Hogg, J. R. (2019). hnRNP L-dependent protection of normal mRNAs from NMD subverts quality control in B cell lymphoma. EMBO Journal, 38, e99128.

    Article  PubMed  Google Scholar 

  46. Kishor, A., Fritz, S. E., Haque, N., Ge, Z., Tunc, I., & Yang, W. (2020). Activation and inhibition of nonsense-mediated mRNA decay control the abundance of alternative polyadenylation products. Nucleic Acids Research, 48, 7468–7482.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fritz, S. E., Ranganathan, S., Wang, C. D., & Hogg, J. R. (2022). An alternative UPF1 isoform drives conditional remodeling of nonsense-mediated mRNA decay. EMBO Journal, 41, e108898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mabin, J. W., Woodward, L. A., Patton, R. D., Yi, Z., Jia, M., Wysocki, V. H., Bundschuh, R., & Singh, G. (2018). The exon junction complex undergoes a compositional switch that alters mRNP structure and nonsense-mediated mRNA decay activity. Cell Reports, 25(9), 2431–2446.

    Article  CAS  PubMed  Google Scholar 

  49. Gerbracht, J. V., Boehm, V., Britto-Borges, T., Kallabis, S., Wiederstein, J. L., Ciriello, S., Aschemeier, D. U., Krüger, M., Frese, C. K., Altmüller, J., Dieterich, C., & Gehring, N. H. (2020). CASC3 promotes transcriptome-wide activation of nonsense-mediated decay by the exon junction complex. Nucleic Acids Research, 48(15), 8626–8644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kadlec, J., Izaurralde, E., & Cusack, S. (2004). The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nature Structural & Molecular Biology, 11, 330–337.

    Article  CAS  Google Scholar 

  51. Panigrahi, G. K., Sahoo, A., & Satapathy, K. B. (2021). Insights to plant immunity: Defense signaling to epigenetics. Physiological and Molecular Plant Pathology, 113, 1–7.

    Article  Google Scholar 

  52. Melero, R., Buchwald, G., Castaño, R., Raabe, M., Gil, D., Lázaro, M., Urlaub, H., Conti, E., & Llorca, O. (2012). The cryo-EM structure of the UPF–EJC complex shows UPF1 poised toward the RNA 3′ end. Nature Structural & Molecular Biology, 19(5), 498–505.

    Article  CAS  Google Scholar 

  53. Sukarta, O. C. A., Slootweg, E. J., & Goverse, A. (2016). Structure informed insights for NLR functioning in plant immunity. Seminars in Cell & Developmental Biology, 56, 134–149.

    Article  CAS  Google Scholar 

  54. Buchwald, G., Ebert, J., Basquin, C., Sauliere, J., Jayachandran, U., Bono, F., Hir, H. L., & Conti, E. (2010). Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex. Proceedings of the National Academy of Sciences, 107(22), 10050–10055.

    Article  ADS  CAS  Google Scholar 

  55. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M., Dreyfuss, G., & Ohno, S. (2006). Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes & Development, 20(3), 355–367.

    Article  CAS  Google Scholar 

  56. Bono, F., Ebert, J., Lorentzen, E., & Conti, E. (2006). The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell, 126(4), 713–725.

    Article  CAS  PubMed  Google Scholar 

  57. Andersen, C. B. F., Ballut, L., Johansen, J. S., Chamieh, H., Nielsen, K. H., Oliveira, C. L. P., Pedersen, J. S., Séraphin, B., Hir, H. L., & Andersen, G. R. (2006). Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science, 313(5795), 1968–1972.

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Panigrahi, G. K., Sahoo, A., & Satapathy, K. B. (2021). Differential expression of selected Arabidopsis resistant genes under abiotic stress conditions. Plant Science Today, 8(4), 859–864.

    Article  CAS  Google Scholar 

  59. Shivaprasad, P. V., Chen, H. M., Patel, K., Bond, D. M., Santos, B. A., & Baulcombe, D. C. (2012). A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. The Plant Cell, 24, 859–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh, G., Kucukural, A., Cenik, C., Leszyk, J. D., Shaffer, S. A., Weng, Z., & Moore, M. J. (2012). The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell, 151(4), 750–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nguyen, L. S., Jolly, L., Shoubridge, C., Chan, W. K., Huang, L., & Laumonnier, F. (2012). Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Molecular Psychiatry, 17, 1103–1115.

    Article  CAS  PubMed  Google Scholar 

  62. Sato, H., Hosoda, N., & Maquat, L. E. (2008). Efficiency of the pioneer round of translation affects the cellular site of nonsense-mediated mRNA decay. Molecular Cell, 29(2), 255–262.

    Article  CAS  PubMed  Google Scholar 

  63. Wallmeroth, D., Lackmann, J. W., Kueckelmann, S., Altmüller, J., Dieterich, C., Boehm, V., & Gehring, N. H. (2022). Human UPF3A and UPF3B enable fault-tolerant activation of nonsense-mediated mRNA decay. The EMBO Journal, 41(10), e109191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yi, Z., Arvola, R. M., Myers, S., Dilsavor, C. N., Abu Alhasan, R., & Carter, B. N. (2022). Mammalian UPF3A and UPF3B can activate nonsense mediated mRNA decay independently of their exon junction complex binding. EMBO Journal, 41, e109202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kurihara, Y., Matsui, A., Hanada, K., Kawashima, M., Ishida, J., Morosawa, T., Tanaka, M., Kaminuma, E., Mochizuki, Y., Matsushima, A., Toyoda, T., Shinozaki, K., & Seki, M. (2009). Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proceedings of the National Academy of Sciences, 106(7), 2453–2458.

    Article  ADS  CAS  Google Scholar 

  66. Viphakone, N., Sudbery, I., Griffith, L., Heath, C. G., Sims, D., & Wilson, S. A. (2019). Co-transcriptional loading of RNA export factors shapes the human transcriptome. Molecular Cell, 75, 310-323.e318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Linder, P., & Jankowsky, E. (2011). From unwinding to clamping—The DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12, 505–516.

    Article  CAS  PubMed  Google Scholar 

  68. Andersen, C. B., Ballut, L., Johansen, J. S., Chamieh, H., Nielsen, K. H., & Oliveira, C. L. (2006). Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science, 313, 1968–1972.

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Karasov, T. L., Chae, E., Herman, J. J., & Bergelson, J. (2017). Mechanisms to mitigate the trade-off between growth and defense. The Plant Cell, 29, 666–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nielsen, K. H., Chamieh, H., Andersen, C. B., Fredslund, F., Hamborg, K., & Le Hir, H. (2009). Mechanism of ATP turnover inhibition in the EJC. RNA, 15, 67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Le Hir, H., Izaurralde, E., Maquat, L. E., & Moore, M. J. (2000). The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO Journal, 19, 6860–6869.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fribourg, S., Gatfield, D., Izaurralde, E., & Conti, E. (2003). A novel mode of RBD-protein recognition in the Y14-Mago complex. Natural Structural Biology, 10, 433–439.

    Article  CAS  Google Scholar 

  73. Ballut, L., Marchadier, B., Baguet, A., Tomasetto, C., Séraphin, B., & Le Hir, H. (2005). The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature Structural & Molecular Biology, 12, 861–869.

    Article  CAS  Google Scholar 

  74. Sahoo, A., & Satapathy, K. B. (2021). Differential expression of Arabidopsis EJC core proteins under short-day and long-day growth conditions. Plant Science Today, 8(4), 815–819.

    Article  CAS  Google Scholar 

  75. Kashima, I., Jonas, S., Jayachandran, U., Buchwald, G., Conti, E., & Lupas, A. N. (2010). SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay. Genes & Development, 24, 2440–2450.

    Article  CAS  Google Scholar 

  76. Garcia, D., Garcia, S., & Voinnet, O. (2014). Nonsense-mediated decay serves as a general viral restriction mechanism in plants. Cell Host & Microbe, 16, 391–402.

    Article  CAS  Google Scholar 

  77. Lykke-Andersen, J., Shu, M. D., & Steitz, J. A. (2001). Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science, 293, 1836–1839.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Gehring, N. H., Lamprinaki, S., Hentze, M. W., & Kulozik, A. E. (2009). The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biology, 7, e1000120.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sakashita, E., Tatsumi, S., Werner, D., Endo, H., & Mayeda, A. (2004). Human RNPS1 and its associated factors: A versatile alternative pre-mRNA splicing regulator in vivo. Molecular and Cellular Biology, 24, 1174–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Imseng, S., Aylett, C. H., & Maier, T. (2018). Architecture and activation of phosphatidylinositol 3-kinase related kinases. Current Opinion in Structural Biology, 49, 177–189.

    Article  CAS  PubMed  Google Scholar 

  81. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y., & Ohno, S. (2001). Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes & Development, 15, 2215–2228.

    Article  CAS  Google Scholar 

  82. Brumbaugh, K. M., Otterness, D. M., Geisen, C., Oliveira, V., Brognard, J., & Li, X. (2004). The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Molecular Cell, 14, 585–598.

    Article  CAS  PubMed  Google Scholar 

  83. Yamashita, A., Izumi, N., Kashima, I., Ohnishi, T., Saari, B., & Katsuhata, Y. (2009). SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes & Development, 23, 1091–1105.

    Article  CAS  Google Scholar 

  84. Arias-Palomo, E., Yamashita, A., Fernández, I. S., Núñez-Ramírez, R., Bamba, Y., & Izumi, N. (2011). The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes & Development, 25, 153–164.

    Article  CAS  Google Scholar 

  85. Deniaud, A., Karuppasamy, M., Bock, T., Masiulis, S., Huard, K., & Garzoni, F. (2015). A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation. Nucleic Acids Research, 43, 7600–7611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu, L., Li, L., Qi, Y., Yu, Z., & Xu, Y. (2019). Cryo-EM structure of SMG1-SMG8-SMG9 complex. Cell Research, 29, 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, L., Lingaraju, M., Basquin, C., Basquin, J., & Conti, E. (2017). Structure of a SMG8-SMG9 complex identifies a G-domain heterodimer in the NMD effector proteins. RNA, 23, 1028–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Langer, L. M., Bonneau, F., Gat, Y., & Conti, E. (2021). Cryo-EM reconstructions of inhibitor-bound SMG1 kinase reveal an autoinhibitory state dependent on SMG8. eLife, 10, e72353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ohnishi, T., Yamashita, A., Kashima, I., Schell, T., Anders, K. R., & Grimson, A. (2003). Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Molecular Cell, 12, 1187–1200.

    Article  CAS  PubMed  Google Scholar 

  90. Kurosaki, T., Li, W., Hoque, M., Popp, M. W., Ermolenko, D. N., & Tian, B. (2014). A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes & Development, 28, 1900–1916.

    Article  CAS  Google Scholar 

  91. Jonas, S., Weichenrieder, O., & Izaurralde, E. (2013). An unusual arrangement of two 14-3-3-like domains in the SMG5-SMG7 heterodimer is required for efficient nonsense-mediated mRNA decay. Genes & Development, 27, 211–225.

    Article  CAS  Google Scholar 

  92. Fukuhara, N., Ebert, J., Unterholzner, L., Lindner, D., Izaurralde, E., & Conti, E. (2005). SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Molecular Cell, 17, 537–547.

    Article  CAS  PubMed  Google Scholar 

  93. Huntzinger, E., Kashima, I., Fauser, M., Saulière, J., & Izaurralde, E. (2008). SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA, 14, 2609–2617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Loh, B., Jonas, S., & Izaurralde, E. (2013). The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes & Development, 27, 2125–2138.

    Article  CAS  Google Scholar 

  95. Glavan, F., Behm-Ansmant, I., Izaurralde, E., & Conti, E. (2006). Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO Journal, 25, 5117–5125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Eberle, A. B., Lykke-Andersen, S., Mühlemann, O., & Jensen, T. H. (2009). SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nature Structural & Molecular Biology, 16, 49–55.

    Article  CAS  Google Scholar 

  97. Boehm, V., Haberman, N., Ottens, F., Ule, J., & Gehring, N. H. (2014). 3′ UTR length and messenger ribonucleoprotein composition determine endocleavage efficiencies at termination codons. Cell Reports, 9(2), 555–568.

    Article  CAS  PubMed  Google Scholar 

  98. Lykke-Andersen, S., Chen, Y., Ardal, B. R., Lilje, B., Waage, J., & Sandelin, A. (2014). Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes. Genes & Development, 28, 2498–2517.

    Article  Google Scholar 

  99. Gatfield, D., & Izaurralde, E. (2004). Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature, 429, 575–578.

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Schmidt, S. A., Foley, P. L., Jeong, D. H., Rymarquis, L. A., Doyle, F., & Tenenbaum, S. A. (2015). Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Research, 43, 309–323.

    Article  CAS  PubMed  Google Scholar 

  101. Boehm, V., Kueckelmann, S., Gerbracht, J. V., Kallabis, S., Britto-Borges, T., & Altmüller, J. (2021). SMG5-SMG7 authorize nonsense-mediated mRNA decay by enabling SMG6 endonucleolytic activity. Nature Communications, 12, 3965.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Metze, S., Herzog, V. A., Ruepp, M. D., & Mühlemann, O. (2013). Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. RNA, 19, 1432–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Colombo, M., Karousis, E. D., Bourquin, J., Bruggmann, R., & Mühlemann, O. (2017). Transcriptome-wide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways. RNA, 23, 189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Serdar, L. D., Whiteside, D. L., Nock, S. L., McGrath, D., & Baker, K. E. (2020). Inhibition of post-termination ribosome recycling at premature termination codons in UPF1 ATPase mutants. eLife, 9, e57834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lejeune, F., Li, X., & Maquat, L. E. (2003). Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Molecular Cell, 12, 675–687.

    Article  CAS  PubMed  Google Scholar 

  106. Chen, C. Y., & Shyu, A. B. (2003). Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Molecular and Cellular Biology, 23, 4805–4813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Monaghan, L., Longman, D., & Cáceres, J. F. (2023). Translation-coupled mRNA quality control mechanisms. The EMBO Journal, 42(19), e114378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hogg, J. R., & Goff, S. P. (2010). Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell, 143(3), 379–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hosoda, N., Kim, Y. K., Lejeune, F., & Maquat, L. E. (2005). CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nature Structural & Molecular Biology, 12, 893–901.

    Article  CAS  Google Scholar 

  110. Neu-Yilik, G., Raimondeau, E., Eliseev, B., Yeramala, L., Amthor, B., Deniaud, A., Huard, K., Kerschgens, K., Hentze, M. W., Schaffitzel, C., & Kulozik, A. E. (2017). Dual function of UPF3B in early and late translation termination. The EMBO Journal, 36(20), 2968–2986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Franks, T. M., Singh, G., & Lykke-Andersen, J. (2010). Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsensemediated mRNA decay. Cell, 143, 938–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Eberle, A. B., Stalder, L., Mathys, H., Orozco, R. Z., & Muhlemann, O. (2008). Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biology, 6, e92.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Panigrahi, G. K., & Satapathy, K. B. (2020). Formation of Arabidopsis Poly(A)-Specific Ribonuclease associated processing bodies in response to pathogenic infection. Plant Archives, 20(2), 4907–4912.

    Google Scholar 

  114. Shigeoka, T., Kato, S., Kawaichi, M., & Ishida, Y. (2012). Evidence that the Upf1-related molecular motor scans the 3′-UTR to ensure mRNA integrity. Nucleic Acids Research, 40, 6887–6897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hogg, J. R., & Goff, S. P. (2010). Upf1 senses 3′UTR length to potentiate mRNA decay. Cell, 143, 379–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lykke-Andersen, S., & Jensen, T. H. (2015). Nonsensemediated mRNA decay: An intricate machinery that shapes transcriptomes. Nature Reviews Molecular Cell Biology, 16, 665–677.

    Article  CAS  PubMed  Google Scholar 

  117. Kurosaki, T., Popp, M. W., & Maquat, L. E. (2019). Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nature Reviews Molecular Cell Biology, 20(7), 406–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang, L., & Wilkinson, M. F. (2012). Regulation of nonsensemediated mRNA decay. Wiley Interdiscip. Rev. RNA, 3, 807–828.

    Article  CAS  PubMed  Google Scholar 

  119. Boehm, V., & Gehring, N. H. (2016). Exon junction complexes: Supervising the gene expression assembly line. Trends in Genetics, 32, 724–735.

    Article  CAS  PubMed  Google Scholar 

  120. Woodward, L. A., Mabin, J. W., Gangras, P., & Singh, G. (2017). The exon junction complex: A lifelong guardian of mRNA fate. Wiley Interdisciplinary Reviews: RNA, 8(3), e1411.

    Article  Google Scholar 

  121. Hir, H. L., Saulière, J., & Wang, Z. (2016). The exon junction complex as a node of post-transcriptional networks. Nature Reviews Molecular Cell Biology, 17(1), 41–54.

    Article  CAS  PubMed  Google Scholar 

  122. Lindeboom, R. G., Supek, F., & Lehner, B. (2016). The rules and impact of nonsense-mediated mRNA decay in human cancers. Nature Genetics, 48(10), 1112–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gangras, P., Gallagher, T. L., Parthun, M. A., Yi, Z., Patton, R. D., Tietz, K. T., Deans, N. C., Bundschuh, R., Amacher, S. L., & Singh, G. (2020). Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3′UTR intron-containing NMD targets. PLOS Genetics, 16(6), e1008830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Silver, D. L., Watkins-Chow, D. E., Schreck, K. C., Pierfelice, T. J., Larson, D. M., Burnetti, A. J., Liaw, H.-J., Myung, K., Walsh, C. A., Gaiano, N., & Pavan, W. J. (2010). The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nature Neuroscience, 13(5), 551–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McMahon, J. J., Miller, E. E., & Silver, D. L. (2016). The exon junction complex in neural development and neurodevelopmental disease. International Journal of Developmental Neuroscience, 55, 117–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hoek, T. A., Khuperkar, D., Lindeboom, R. G. H., Stijn Sonneveld, B. M. P., Verhagen, S. B., Vermeulen, M., & Tanenbaum, M. E. (2019). Single-molecule imaging uncovers rules governing nonsense-mediated mRNA decay. Molecular Cell, 75(2), 324–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nott, A., Le Hir, H., & Moore, M. J. (2004). Splicing enhances translation in mammalian cells: An additional function of the exon junction complex. Genes & Development, 18(2), 210–222.

    Article  CAS  Google Scholar 

  128. Tan, K., Stupack, D. G., & Wilkinson, M. F. (2022). Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nature Reviews Cancer, 22, 437–451.

    Article  CAS  PubMed  Google Scholar 

  129. Celik, A., Baker, R., He, F., & Jacobson, A. (2017). High-resolution profiling of NMD targets in yeast reveals translational fidelity as a basis for substrate selection. RNA, 23, 735–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boehm, V., Britto-Borges, T., Steckelberg, A.-L., Singh, K. K., Gerbracht, J. V., Gueney, E., Blazquez, L., Altmüller, J., Dieterich, C., & Gehring, N. H. (2018). Exon junction complexes suppress spurious splice sites to safeguard transcriptome integrity. Molecular Cell, 72(3), 482–495.

    Article  CAS  PubMed  Google Scholar 

  131. Wang, Z., Ballut, L., Barbosa, I., & Le Hir, H. (2018). Exon Junction Complexes can have distinct functional flavours to regulate specific splicing events. Scientific Reports, 8(1), 1–8.

    Google Scholar 

  132. Aznarez, I., Nomakuchi, T. T., Tetenbaum-Novatt, J., Rahman, M. A., Fregoso, O., Rees, H., & Krainer, A. R. (2018). Mechanism of nonsense-mediated mRNA decay stimulation by splicing factor SRSF1. Cell Reports, 23(7), 2186–2198.

    Article  CAS  PubMed  Google Scholar 

  133. Rahman, M. A., Lin, K. T., Bradley, R. K., Abdel-Wahab, O., & Krainer, A. R. (2020). Recurrent SRSF2 mutations in MDS affect both splicing and NMD. Genes & Development, 34(5–6), 413–427.

    Article  CAS  Google Scholar 

  134. Dinesh-Kumar, S. P., & Baker, B. J. (2000). Alternatively, spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance. Proceedings of the National academy of Sciences of the United States of America, 97, 1908–1913.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Celik, A., Baker, R., He, F., & Jacobson, A. (2017). High-resolution profiling of NMD targets in yeast reveals translational fidelity as a basis for substrate selection. RNA, 23(5), 735–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lynch, S. A., Nguyen, L. S., Ng, L. Y., Waldron, M., McDonald, D., & Gecz, J. (2012). Broadening the phenotype associated with mutations in UPF3B: Two further cases with renal dysplasia and variable developmental delay. European Journal of Medical Genetics, 55(8–9), 476–479.

    Article  PubMed  Google Scholar 

  137. Laumonnier, F., Shoubridge, C., Antar, C., Nguyen, L. S., Van Esch, H., Kleefstra, T., Briault, S., Fryns, J. P., Hamel, B., Chelly, J., Ropers, H. H., Ronce, N., Blesson, S., Moraine, C., Gécz, J., & Raynaud, M. (2010). Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Molecular Psychiatry, 15(7), 767–776.

    Article  CAS  PubMed  Google Scholar 

  138. Xu, X., Zhang, L., Tong, P., Xun, G., Su, W., Xiong, Z., Zhu, T., Zheng, Y., Luo, S., Pan, Y., Xia, K., & Hu, Z. (2013). Exome sequencing identifies UPF3B as the causative gene for a Chinese non-syndrome mental retardation pedigree. Clinical Genetics, 83(6), 560–564.

    Article  CAS  PubMed  Google Scholar 

  139. Jolly, L. A., Homan, C. C., Jacob, R., Barry, S., & Gecz, J. (2013). The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Human Molecular Genetics, 22(23), 4673–4687.

    Article  CAS  PubMed  Google Scholar 

  140. Alrahbeni, T., Sartor, F., Anderson, J., Miedzybrodzka, Z., McCaig, C., & Müller, B. (2015). Full UPF3B function is critical for neuronal differentiation of neural stem cells. Molecular Brain, 8(1), 1–15.

    Article  CAS  Google Scholar 

  141. Huang, L., Shum, E. Y., Jones, S. H., Lou, C.-H., Chousal, J., Kim, H., Roberts, A. J., Jolly, L. A., Espinoza, J. L., Skarbrevik, D. M., Phan, M. H., Cook-Andersen, H., Swerdlow, N. R., Gecz, J., & Wilkinson, M. F. (2018). A Upf3b-mutant mouse model with behavioral and neurogenesis defects. Molecular Psychiatry, 23(8), 1773–1786.

    Article  CAS  PubMed  Google Scholar 

  142. Huang, L., Low, A., Damle, S., Keenan, M. M., Kuntz, S., Murray, S. F., Monia, B. P., & Guo, S. (2018). Antisense suppression of the nonsense mediated decay factor Upf3b as a potential treatment for diseases caused by nonsense mutations. Genome Biology, 19(1).

  143. Nguyen, L. S., Jolly, L., Shoubridge, C., Chan, W. K., Huang, L., Laumonnier, F., Raynaud, M., Hackett, A., Field, M., Rodriguez, J., Srivastava, A. K., Lee, Y., Long, R., Addington, A. M., Rapoport, J. L., Suren, S., Hahn, C. N., Gamble, J., Wilkinson, M. F., … Gecz, J. (2012). Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Molecular Psychiatry, 17(11), 1103–1115.

    Article  CAS  PubMed  Google Scholar 

  144. Chan, W. K., Huang, L., Gudikote, J. P., Chang, Y. F., Imam, J. S., MacLean, J. A., & Wilkinson, M. F. (2007). An alternative branch of the nonsense-mediated decay pathway. The EMBO journal, 26(7), 1820–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kunz, J. B., Neu-Yilik, G., Hentze, M. W., Kulozik, A. E., & Gehring, N. H. (2006). Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA, 12(6), 1015–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chan, W. K., Bhalla, A. D., Le Hir, H., Nguyen, L. S., Huang, L., Gécz, J., & Wilkinson, M. F. (2009). A UPF3-mediated regulatory switch that maintains RNA surveillance. Nature Structural & Molecular Biology, 16(7), 747–753.

    Article  CAS  Google Scholar 

  147. Avery, P., Vicente-Crespo, M., Francis, D., Nashchekina, O., Alonso, C. R., & Palacios, I. M. (2011). Drosophila Upf1 and Upf2 loss of function inhibits cell growth and causes animal death in a Upf3-independent manner. RNA, 17(4), 624–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Thorén, L., Norgaard, G. A., Weischenfeldt, J., Waage, J., Jakobsen, J. S., Damgaard, I., Bergström, F., Blom, A. M., Borup, R., Bisgaard, H. C., & Porse, B. T. (2010). UPF2 is a critical regulator of liver development, function and regeneration. PLOS ONE, 5(7), e11650.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  149. Weischenfeldt, J., Waage, J., Tian, G., Zhao, J., Damgaard, I., Jakobsen, J. S., Kristiansen, K., Krogh, A., Wang, J., & Porse, B. T. (2012). Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns. GenomeBiology.com (London. Print), 13(5), R35.

    CAS  Google Scholar 

  150. Nguyen, L. S., Kim, H., Rosenfeld, J. A., Shen, Y., Gusella, J. F., Lacassie, Y., Layman, L. C., Shaffer, L. G., & Gécz, J. (2013). Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Human Molecular Genetics, 22(9), 1816–1825.

    Article  CAS  PubMed  Google Scholar 

  151. Johnson, J. L., Stoica, L. E., Liu, Y., Zhu, P., Bhattacharya, A., Buffington, S. A., Huq, R., Eissa, N. T., Larsson, O., Porse, B. T., Domingo, D., Nawaz, U., Carroll, R., Jolly, L. A., Scerri, T. S., Kim, H. G., Brignell, A., Coleman, M., Braden, R., … Costa-Mattioli, M. (2019). Inhibition of UPF2-Dependent Nonsense-Mediated decay leads to behavioral and neurophysiological abnormalities by activating the immune response. Neuron, 104(4), 665–679.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ivanov, P. V., Gehring, N. H., Kunz, J. B., Hentze, M. W., & Kulozik, A. E. (2008). Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. The EMBO Journal, 27(5), 736–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Karam, R., Lou, C. H., Kroeger, H., Huang, L., Lin, J. H., & Wilkinson, M. F. (2015). The unfolded protein response is shaped by the NMD pathway. EMBO Reports, 16(5), 599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lou, C.-H., Chousal, J., Goetz, A., Shum, E. Y., Brafman, D., Liao, X., Mora-Castilla, S., Ramaiah, M., Cook-Andersen, H., Laurent, L., & Wilkinson, M. F. (2016). Nonsense-mediated RNA decay influences human embryonic stem cell fate. Stem Cell Reports, 6(6), 844–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gong, C., Kim, Y. K., Woeller, C. F., Tang, Y., & Maquat, L. E. (2009). SMD and NMD are competitive pathways that contribute to myogenesis: Effects on PAX3 and myogenin mRNAs. Genes & Development, 23(1), 54–66.

    Article  CAS  Google Scholar 

  156. Gowravaram, M., Schwarz, J., Khilji, S. K., Urlaub, H., & Chakrabarti, S. (2019). Insights into the assembly and architecture of a Staufen-mediated mRNA decay (SMD)-competent mRNP. Nature Communications, 10(1), 5054.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  157. Shum, E. Y., Jones, S. H., Shao, A., Chousal, J. N., Krause, M. D., Chan, W.-K., Lou, C.-H., Espinoza, J. L., Song, H.-W., Phan, M. H., Ramaiah, M., Huang, L., McCarrey, J. R., Peterson, K. J., De Rooij, D. G., Cook-Andersen, H., & Wilkinson, M. F. (2016). The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell, 165(2), 382–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Baird, T. D., Cheng, K. C. C., Chen, Y. C., Buehler, E., Martin, S. E., Inglese, J., & Hogg, J. R. (2018). ICE1 promotes the link between splicing and nonsense-mediated mRNA decay. eLife, 7, e33178.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ryu, I., Won, Y.-S., Ha, H., Kim, E., Park, Y., Kim, M. K., Kwon, D. H., Choe, J., Song, H. K., Jung, H., & Kim, Y. K. (2019). eIF4A3 phosphorylation by CDKs affects NMD during the cell cycle. Cell Reports, 26(8), 2126–2139.

    Article  CAS  PubMed  Google Scholar 

  160. Hsu, I. W., Hsu, M., Li, C., Chuang, T. W., Lin, R. I., & Tarn, W. Y. (2005). Phosphorylation of Y14 modulates its interaction with proteins involved in mRNA metabolism and influences its methylation. Journal of Biological Chemistry, 280(41), 34507–34512.

    Article  CAS  PubMed  Google Scholar 

  161. Tatsuno, T., & Ishigaki, Y. (2018). C-terminal short arginine/serine repeat sequence-dependent regulation of Y14 (RBM8A) localization. Science and Reports, 8, 612.

    Article  ADS  Google Scholar 

  162. Trembley, J. H., Tatsumi, S., Sakashita, E., Loyer, P., Slaughter, C. A., Suzuki, H., Endo, H., Kidd, V. J., & Mayeda, A. (2005). Activation of pre-mRNA splicing by human RNPS1 is regulated by CK2 phosphorylation. Molecular and Cellular Biology, 25(4), 1446–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Viegas, M. H., Gehring, N. H., Breit, S., Hentze, M. W., & Kulozik, A. E. (2007). The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the nonsense mediated decay pathway. Nucleic Acids Research, 35(13), 4542–4551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bruno, I. G., Karam, R., Huang, L., Bhardwaj, A., Lou, C. H., Shum, E. Y., Song, H.-W., Corbett, M. A., Gifford, W. D., Gecz, J., Pfaff, S. L., & Wilkinson, M. F. (2011). Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Molecular Cell, 42(4), 500–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Baguet, A., Degot, S., Cougot, N., Bertrand, E., Chenard, M.-P., Wendling, C., Kessler, P., Hir, H. L., Rio, M.-C., & Tomasetto, C. (2007). The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly. Journal of Cell Science, 120(16), 2774–2784.

    Article  CAS  PubMed  Google Scholar 

  166. Cougot, N., Daguenet, É., Baguet, A., Cavalier, A., Thomas, D., Bellaud, P., Fautrel, A., Godey, F., Bertrand, É., Tomasetto, C., & Gillet, R. (2014). MLN51 triggers P-body disassembly and formation of a new type of RNA granules. Journal of Cell Science127(21), 4692–4701.

    PubMed  Google Scholar 

  167. Chu, V., Feng, Q., Lim, Y., & Shao, S. (2021). Selective destabilization of polypeptides synthesized from NMD-targeted transcripts. Molecular Biology of the Cell, 32, ar38.

  168. Panigrahi, G. K., & Satapathy, K. B. (2020). Sacrificed surveillance process favours plant defense: A review. Plant Archives, 20(1), 2551–2559.

    Google Scholar 

  169. Panigrahi, G. K., Sahoo, S. K., Sahoo, A., Behera, S., Sahu, S. R., Dash, A., & Satapathy, K. B. (2021). Bioactive molecules from plants: A prospective approach to combat SARS-Cov-2. Advances in Traditional Medicine, 23, 1–14.

    Google Scholar 

  170. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M., Dreyfuss, G., & Ohno, S. (2006). Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes & Development, 20, 355–367.

    Article  CAS  Google Scholar 

  171. Panigrahi, G. K., & Satapathy, K. B. (2021). Pseudomonas syringae pv. syringae infection orchestrates the fate of the Arabidopsis J domain containing cochaperone and decapping protein factor 5. Physiological and Molecular Plant Pathology, 113(101598), 1–9.

    Google Scholar 

  172. Sahoo, A., Satapathy, K. B., & Panigrahi, G. K. (2023). Ectopic expression of disease resistance protein promotes resistance against pathogen infection and drought stress in Arabidopsis. Physiological and Molecular Plant Pathology, 124(101949), 1–7.

    Google Scholar 

  173. Jung, H. W., Panigrahi, G. K., Jung, G.-Y., Lee, Y. J., Shin, K. H., Sahoo, A., Choi, E. S., Lee, E., Kim, K. M., Yang, S. H., Jeon, J. S., Lee, S. C., & Kim, S. H. (2020). PAMP-triggered immunity involves proteolytic degradation of core nonsense-mediated mRNA decay factors during early defense response. The Plant Cell, 32(4), 1081–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Addington, A. M., Gauthier, J., Piton, A., Hamdan, F. F., Raymond, A., Gogtay, N., Miller, R., Tossell, J., Bakalar, J., & Inoff-Germain, G. (2011). A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Molecular Psychiatry, 16, 238–239.

    Article  CAS  PubMed  Google Scholar 

  175. Tan, K., Jones, S. H., Lake, B. B., Dumdie, J. N., Shum, E. Y., Zhang, L., Chen, S., Sohni, A., Pandya, S., Gallo, R. L., Zhang, K., Cook‐Andersen, H., & Wilkinson, M. (2020). The role of the NMD factor UPF3B in olfactory sensory neurons. eLife, 9, e57525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Colak, D., Ji, S. J., Porse, B. T., & Jaffrey, S. R. (2013). Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell, 153, 1252–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bruno, I. G., Karam, R., Huang, L., Bhardwaj, A., Lou, C. H., Shum, E. Y., Song, H. W., Corbett, M. A., Gifford, W. D., & Gecz, J. (2011). Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Molecular Cell, 42, 500–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Agarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4, e05005.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lou, C. H., Shao, A., Shum, E. Y., Espinoza, J. L., Huang, L., Karam, R., & Wilkinson, M. F. (2014). Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Reports, 6, 748–764.

    Article  CAS  PubMed  Google Scholar 

  180. Wang, G., Jiang, B., Jia, C., Chai, B., & Liang, A. (2013). MicroRNA 125 represses nonsense-mediated mRNA decay by regulating SMG1 expression. Biochemical and Biophysical Research Communications, 435, 16–20.

    Article  CAS  PubMed  Google Scholar 

  181. Gong, C., Kim, Y. K., Woeller, C. F., Tang, Y., & Maquat, L. E. (2009). SMD and NMD are competitive pathways that contribute to myogenesis: Effects on PAX3 and myogenin mRNAs. Genes & Development, 23, 54–66.

    Article  CAS  Google Scholar 

  182. Bourgeois, C. F., Lejeune, F., & Stévenin, J. (2004). Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. Progress in Nucleic Acid Research and Molecular Biology, 78, 37–88.

    Article  CAS  PubMed  Google Scholar 

  183. Braunschweig, U., Gueroussov, S., Plocik, A. M., Graveley, B. R., & Blencowe, B. J. (2013). Dynamic integration of splicing within gene regulatory pathways. Cell, 152, 1252–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chabot, B., & Shkreta, L. (2016). Defective control of pre-messenger RNA splicing in human disease. Journal of Cell Biology, 212, 13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Serin, G., Gersappe, A., Black, J. D., Aronoff, R., & Maquat, L. E. (2001). Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Molecular and Cellular Biology, 21, 209–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ohnishi, T., Yamashita, A., Kashima, I., Schell, T., Anders, K. R., Grimson, A., Hachiya, T., Hentze, M. W., Anderson, P., & Ohno, S. (2003). Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Molecular Cell, 12(5), 1187–1200.

    Article  CAS  PubMed  Google Scholar 

  187. Gowravaram, M., Bonneau, F., Kanaan, J., Maciej, V. D., Fiorini, F., Raj, S., Croquette, V., Hir, H. L., & Chakrabarti, S. (2018). A conserved structural element in the RNA helicase UPF1 regulates its catalytic activity in an isoform-specific manner. Nucleic Acids Research, 46(5), 2648–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Padariya, M., Fahraeus, R., Hupp, T., & Kalathiya, U. (2021). Molecular determinants and specificity of mRNA with alternatively -Spliced UPF1 isoforms, influenced by an insertion in the ‘regulatory loop.’ International Journal of Molecular Sciences, 22(23), 12744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Longman, D., Jackson-Jones, K. A., Maslon, M. M., Murphy, L. C., Young, R. S., Stoddart, J. J., Hug, N., Taylor, M. S., Papadopoulos, D. K., & Cáceres, J. F. (2020). Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes & Development, 34(15–16), 1075–1088.

    Article  CAS  Google Scholar 

  190. Chiu, S. Y., Lejeune, F., Ranganathan, A. C., & Maquat, L. E. (2004). The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes & Development, 18(7), 745–754.

    Article  CAS  Google Scholar 

  191. Nickless, A., Jackson, E., Marasa, J., Nugent, P., Mercer, R. W., Piwnica-Worms, D., & You, Z. (2014). Intracellular calcium regulates nonsense-mediated mRNA decay. Nature Medicine, 20(8), 961–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tantral, L., Malathi, K., Kohyama, S., Silane, M., Berenstein, A., & Jayaraman, T. (2004). Intracellular calcium release is required for caspase-3 and-9 activation. Cell Biochemistry and Function, 22(1), 35–40.

    Article  CAS  PubMed  Google Scholar 

  193. Jia, J., Furlan, A., Gonzalez-Hilarion, S., Leroy, C., Gruenert, D. C., Tulasne, D., & Lejeune, F. (2015). Caspases shutdown nonsense-mediated mRNA decay during apoptosis. Cell Death & Differentiation, 22(11), 1754–1763.

    Article  CAS  Google Scholar 

  194. Popp, M. W., & Maquat, L. E. (2015). Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nature communications, 6(1), 6632.

    Article  ADS  CAS  PubMed  Google Scholar 

  195. Li, Z., Vuong, J. K., Zhang, M., Stork, C., & Zheng, S. (2017). Inhibition of nonsense-mediated RNA decay by ER stress. RNA, 23(3), 378–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chang, L., Li, C., Guo, T., Wang, H., Ma, W., Yuan, Y., Liu, Q., Ye, Q., & Liu, Z. (2016). The human RNA surveillance factor UPF1 regulates tumorigenesis by targeting Smad7 in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 35(1), 1–12.

    Article  ADS  Google Scholar 

  197. Shi, M., Wang, S., Yao, Y., Li, Y., Zhang, H., Han, F., Nie, H., Su, J., Wang, Z., Yue, L., Cao, J., & Li, Y. (2014). Biological and clinical significance of epigenetic silencing of MARVELD1 gene in lung cancer. Scientific Reports, 4(1), 7545.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  198. Bokhari, A., Jonchere, V., Lagrange, A., Bertrand, R., Svrcek, M., Marisa, L., Buhard, O., Greene, M., Demidova, A., Jia, J., Adriaenssens, E., Chassat, T., Biard, D. S., Flejou, J.-F., Lejeune, F., Duval, A., & Collura, A. (2018). Targeting nonsense-mediated mRNA decay in colorectal cancers with microsatellite instability. Oncogenesis, 7(9), 70.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Palma, M., Leroy, C., Salomé-Desnoulez, S., Werkmeister, E., Kong, R., Mongy, M., Hir, H. L., & Lejeune, F. (2021). A role for AKT1 in nonsense-mediated mRNA decay. Nucleic Acids Research, 49(19), 11022–11037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Huang, L., Lou, C. H., Chan, W., Shum, E. Y., Shao, A., Stone, E., & Wilkinson, M. F. (2011). RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Molecular Cell, 43(6), 950–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sahoo, A., Satapathy, K. B., & Panigrahi, G. K. (2023). Security check: plant immunity under temperature surveillance. Journal of Plant Biochemistry and Biotechnology, 33, 1–4.

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the administration and management of Centurion University of Technology and Management, Odisha, India for their heartfelt support. We apologize to all colleagues whose work could not be included owing to space limitations.

Funding

The authors would like to thank the Vice Chancellor, Centurion University of Technology and Management, Odisha for providing financial support to GKP (grant approval letter no: CUTM/VC Office/45 to GKP).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have substantial contribution for the preparation of the manuscript. GKP conceptualized and conceived the idea, RD and GKP performed data curation and writing of the manuscript. All the authors have read and approved the final manuscript before submission.

Corresponding author

Correspondence to Gagan Kumar Panigrahi.

Ethics declarations

Competing interest

The authors declare that they have no conflicts of interest.

Ethical Approval

It is a review article. No ethics approval is required.

Consent to Publish

Not applicable.

Human and Animal Rights

It is a review article. No animals were used in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Panigrahi, G.K. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01062-4

Keywords

Navigation