Skip to main content

Advertisement

Log in

MicroRNAs Associated with Keloids Identified by Microarray Analysis and In Vitro Experiments

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play a crucial role in gene regulation and the development of keloid. This research aimed to identify and verify miRNAs associated with keloids by microarray analysis and in vitro experiments, shedding light on seeking for potential therapeutic molecular targets. In this study, the weighted gene co-expression network analysis was performed based on the GSE113620. The key miRNA module most relevant to the keloid was further screened to identify hub miRNAs, and then hub miRNAs was verified by the microarray analysis and qRT-PCR experiments. Additionally, targeted genes of hub miRNAs were predicted and verified. Gene ontology (GO) analysis and KEGG enrichment analysis were also conducted. Five miRNA modules were divided, and the blue module exhibited the highest correlation with keloids. Then, hsa-miR-127-3p, hsa-miR-214-3p, hsa-miR-155-5p, hsa-miR-409-5p, and hsa-miR-542-5p were identified as the hub miRNAs. Subsequently, the microarray analysis and qRT-PCR results demonstrated that the expression of five miRNAs were upregulated in keloid tissues. The GO analysis revealed that the target genes of these miRNAs were mainly enriched in biological processes including gene transcription, protein phosphorylation and the MAPK (mitogen-activated protein kinase) cascade, and the KEGG pathway enrichment analysis showed that the PI3K-AKT signaling pathway were significantly enriched. In conclusion, these five miRNAs (hsa-miR-127-3p, hsa-miR-155-5p, hsa-miR-214-3p, hsa-miR-409-5p, and hsa-miR-542-5p) play vital roles in the pathogenesis of keloid and might be potential therapeutic targets. These miRNAs might regulate genes enriched in gene transcription, protein phosphorylation, the MAPK cascade, and the PI3K-Akt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The dataset described in this article can be freely and openly accessed at the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

Abbreviations

GEO:

Gene expression omnibus

WGCNA:

Weighted gene co-expression network analysis

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

STRING:

Search tool for the retrieval of interacting genes/proteins database

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

3’-UTR:

3'-untranslated region

TGF-β:

Transforming growth factor-β

TOM:

Topological overlap matrix

ME:

Module eigengenes

MS:

Module significance

MM:

Module membership

GS:

Gene significance

STRING:

Search Tool for the Retrieval of Interacting Genes/Proteins

PPI:

Protein–protein interaction

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

MAPK:

Mitogen-activated protein kinase

PI3K/Akt:

Phosphatidylinositol-3-kinase/protein-serine-threonine

EMT:

Epithelial–mesenchymal transition

ERKs:

Extracellular signal-regulated kinases

JNK:

Jun NH2-terminal kinase

References

  1. Cohen, A. J., Nikbakht, N., & Uitto, J. (2023). Keloid Disorder: Genetic Basis, Gene Expression Profiles, and Immunological Modulation of the Fibrotic Processes in the Skin. Cold Spring Harbor Perspectives in Biology, 15, a041245.

    Article  PubMed  Google Scholar 

  2. Gouda, M. H., Elbaathy, S. A., Abd Elkareem, A. H., & Sabry, H. H. J. B. M. J. (2021). Comparison between Dermoscopic and Histopathological Features of Keloids and Hypertrophic Scars Before and After Different Treatment Modalities., 38, 750–764.

    Google Scholar 

  3. Ekstein, S. F., Wyles, S. P., Moran, S. L., & Meves, A. (2021). Keloids: a review of therapeutic management. International Journal of Dermatology, 60, 661–71.

    Article  CAS  PubMed  Google Scholar 

  4. Elsaie ML. (2021) Update on management of keloid and hypertrophic scars: A systemic review. Journal of cosmetic dermatology.20:2729–38.

  5. Ogawa, R., Dohi, T., Tosa, M., Aoki, M., & Akaishi, S. (2021). The Latest Strategy for Keloid and Hypertrophic Scar Prevention and Treatment: The Nippon Medical School (NMS) Protocol. Journal of Nippon Medical School, 88, 2–9.

    Article  CAS  PubMed  Google Scholar 

  6. Huang, C., Liu, L., You, Z., Du, Y., & Ogawa, R. (2019). Managing keloid scars: From radiation therapy to actual and potential drug deliveries. International Wound Journal, 16, 852–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bojanic, C., To, K., Hatoum, A., Shea, J., Seah, K. T. M., Khan, W., & Malata, C. M. (2021). Mesenchymal stem cell therapy in hypertrophic and keloid scars. Cell and Tissue Research, 383, 915–30.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hwang, N. H., Chang, J. H., Lee, N. K., & Yang, K. S. (2022). Effect of the biologically effective dose of electron beam radiation therapy on recurrence rate after keloid excision: A meta-analysis. Radiotherapy and Oncology, 173, 146–153.

    Article  CAS  PubMed  Google Scholar 

  9. Nyika, D. T., Khumalo, N. P., & Bayat, A. (2022). Genetics and epigenetics of keloids. Advances in Wound Care, 11, 192–201.

    Article  PubMed  Google Scholar 

  10. Hushcha, Y., Blo, I., Oton-Gonzalez, L., Mauro, G. D., Martini, F., Tognon, M., & Mattei, M. (2021). microRNAs in the regulation of melanogenesis. International Journal of Molecular Sciences, 22(12), 6104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsai, C. H., & Ogawa, R. (2019). Keloid research: Current status and future directions. Scars Burn Heal., 5, 2059513119868659.

    PubMed  PubMed Central  Google Scholar 

  12. Deng, Z., He, Y., Yang, X., Shi, H., Shi, A., Lu, L., & He, L. (2017). MicroRNA-29: A crucial player in fibrotic disease. Molecular Diagnosis & Therapy, 21, 285–94.

    Article  CAS  Google Scholar 

  13. Gallant-Behm, C. L., Piper, J., Lynch, J. M., Seto, A. G., Hong, S. J., Mustoe, T. A., Maari, C., Pestano, L. A., Dalby, C. M., Jackson, A. L., Rubin, P., & Marshall, W. S. (2019). A MicroRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin. The Journal of Investigative Dermatology, 139, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  14. Wu, J., Fang, L., Cen, Y., Qing, Y., Chen, J., & Li, Z. (2019). MiR-21 regulates keloid formation by downregulating Smad7 via the TGF-β/Smad signaling pathway. Journal of Burn Care & Research, 40, 809–817.

    Article  Google Scholar 

  15. Yan, L., Wang, L. Z., Xiao, R., Cao, R., Pan, B., Lv, X. Y., Jiao, H., Zhuang, Q., Sun, X. J., & Liu, Y. B. (2020). Inhibition of microRNA-21–5p reduces keloid fibroblast autophagy and migration by targeting PTEN after electron beam irradiation. Laboratory Investigation, 100, 387–99.

    Article  CAS  PubMed  Google Scholar 

  16. Onoufriadis, A., Hsu, C. K., Ainali, C., Ung, C. Y., Rashidghamat, E., Yang, H. S., Huang, H. Y., Niazi, U., Tziotzios, C., Yang, J. C., Nuamah, R., Tang, M. J., Saxena, A., de Rinaldis, E., & McGrath, J. A. (2018). Time series integrative analysis of RNA sequencing and MicroRNA expression data reveals key biologic wound healing pathways in keloid-prone individuals. The Journal of Investigative Dermatology, 138, 2690–2693.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, S., Liu, Z., Li, M., Huang, Y., Wang, M., Zeng, W., Wei, W., Zhang, C., Gong, Y., & Guo, L. (2020). Potential prognostic predictors and molecular targets for skin melanoma screened by weighted gene co-expression network analysis. Current Gene Therapy, 20, 5–14.

    ADS  PubMed  Google Scholar 

  18. Tang, J., Yang, Q., Cui, Q., Zhang, D., Kong, D., Liao, X., Ren, J., Gong, Y., & Wu, G. (2020). Weighted gene correlation network analysis identifies RSAD2, HERC5, and CCL8 as prognostic candidates for breast cancer. Journal of Cellular Physiology, 235, 394–407.

    Article  CAS  PubMed  Google Scholar 

  19. Wei, Z., Zhongqiu, T., Lu, S., Zhang, F., Xie, W., & Wang, Y. (2020). Gene coexpression analysis offers important modules and pathway of human lung adenocarcinomas. Journal of Cellular Physiology, 235, 454–64.

    Article  CAS  PubMed  Google Scholar 

  20. Feng, T., Li, K., Zheng, P., Wang, Y., Lv, Y., Shen, L., Chen, Y., Xue, Z., Li, B., Jin, L., & Yao, Y. (2019). Weighted gene coexpression network analysis identified MicroRNA coexpression modules and related pathways in type 2 diabetes mellitus. Oxidative Medicine and Cellular Longevity, 2019, 9567641.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yip, A. M., & Horvath, S. (2007). Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics, 8, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, J., Sui, J., Mao, C., Li, X., Chen, X., Liang, C., Wang, X., Wang, S. H., & Jia, C. (2021). Identification of key pathways and genes related to the development of hair follicle cycle in Cashmere goats. Genes, 12, 180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, L., Yang, X., Wei, R., Ye, T., Zhou, J. K., Wen, M., Men, R., Li, P., Dong, B., Liu, L., Fu, X., Xu, H., Aqeilan, R. I., Wei, Y. Q., Yang, L., & Peng, Y. (2018). MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death & Disease, 9, 718.

    Article  Google Scholar 

  24. Okada, H., Honda, M., Campbell, J. S., Takegoshi, K., Sakai, Y., Yamashita, T., Shirasaki, T., Takabatake, R., Nakamura, M., Tanaka, T., & Kaneko, S. (2015). Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice. Cancer Science, 106, 1143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, K., Shi, J., Hu, Z., & Hu, X. (2019). The deficiency of miR-214–3p exacerbates cardiac fibrosis via miR-214–3p/NLRC5 axis. Clinical Scie nce, 133, 1845–56.

    Article  CAS  Google Scholar 

  26. Zhang, Y., Chang, X., Wu, D., Deng, M., Miao, J., & Jin, Z. (2021). Down-regulation of exosomal miR-214–3p targeting CCN2 contributes to endometriosis fibrosis and the role of exosomes in the horizontal transfer of miR-214–3p. Reproductive Sciences, 28, 715–27.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, W., Li, X., Tang, Y., Chen, C., Jing, R., & Liu, T. (2020). miR-155-5p implicates in the pathogenesis of renal fibrosis via targeting SOCS1 and SOCS6. Oxidative Medicine and Cellular Longevity, 2020, 6263921.

    PubMed  PubMed Central  Google Scholar 

  28. Ren, L., Zhao, Y., Huo, X., & Wu, X. (2018). MiR-155-5p promotes fibroblast cell proliferation and inhibits FOXO signaling pathway in vulvar lichen sclerosis by targeting FOXO3 and CDKN1B. Gene, 653, 43–50.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, L., Huang, W., Zhang, L., Chen, Q., & Zhao, H. (2018). Molecular pathogenesis involved in human idiopathic pulmonary fibrosis based on an integrated microRNA-mRNA interaction network. Molecular Medicine Reports, 18, 4365–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Castilla, M., Moreno-Bueno, G., Romero-Pérez, L., Van De Vijver, K., Biscuola, M., López-García, M., Prat, J., Matías-Guiu, X., Cano, A., Oliva, E., & Palacios, J. (2011). Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. The Journal of Pathology, 223, 72–80.

    Article  CAS  PubMed  Google Scholar 

  31. Yuan, F. L., Sun, Z. L., Feng, Y., Liu, S. Y., Du, Y., Yu, S., Yang, M. L., & Lv, G. Z. (2019). Epithelial-mesenchymal transition in the formation of hypertrophic scars and keloids. Journal of Cellular Physiology, 234, 21662–9.

    Article  CAS  PubMed  Google Scholar 

  32. Parenti, I., Mallozzi, M. B., Hüning, I., Gervasini, C., Kuechler, A., Agolini, E., Albrecht, B., Baquero-Montoya, C., Bohring, A., Bramswig, N. C., Busche, A., Dalski, A., Guo, Y., Hanker, B., Hellenbroich, Y., Horn, D., Innes, A. M., Leoni, C., Li, Y. R., … Kaiser, F. J. (2021). ANKRD11 variants: KBG syndrome and beyond. Clinical Genetics, 100, 187–200.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, W., Wu, X., Yang, B., Yao, X., Cui, X., Xu, P., & Chen, X. (2019). miR-188-5p regulates proliferation and invasion via PI3K/Akt/MMP-2/9 signaling in keloids. Acta biochimica et biophysica Sinica, 51, 185–196.

    Article  CAS  PubMed  Google Scholar 

  34. An, G., Liang, S., Sheng, C., Liu, Y., & Yao, W. (2017). Upregulation of microRNA-205 suppresses vascular endothelial growth factor expression-mediated PI3K/Akt signaling transduction in human keloid fibroblasts. Experimental Biology and Medicine, 242, 275–85.

    Article  CAS  PubMed  Google Scholar 

  35. Xin, Y., Min, P., Xu, H., Zhang, Z., Zhang, Y., & Zhang, Y. (2020). CD26 upregulates proliferation and invasion in keloid fibroblasts through an IGF-1-induced PI3K/AKT/mTOR pathway. Burns & Trauma, 8, tkaa025.

    Article  Google Scholar 

  36. Unahabhokha, T., Sucontphunt, A., Nimmannit, U., Chanvorachote, P., Yongsanguanchai, N., & Pongrakhananon, V. (2015). Molecular signalings in keloid disease and current therapeutic approaches from natural based compounds. Pharmaceutical Biology, 53, 457–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by National Natural Science Foundation of China (81971846) and National High Level Hospital Clinical Research Funding (Grant nos. 2022-PUMCH-B-042, 2022-PUMCH-B-041, 2022-PUMCH-A-210 and 2022-PUMCH-C-025).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, and resources: SC and ZML; Investigation, data curation, formal analysis, validation, software, project administration, and supervision: WZ, ZX, JX, and ZZL; Writing and visualization: SC; and Funding acquisition: NY and XW. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nanze Yu or Xiaojun Wang.

Ethics declarations

Competing interest

None.

Ethical Approval

The written informed consent was obtained from all the patients and the study protocol was approved by the Bioethical Committee of Peking Union Medical College Hospital (ZS-2222).

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 38 KB)

Supplementary file2 (PDF 158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, W., Xia, Z. et al. MicroRNAs Associated with Keloids Identified by Microarray Analysis and In Vitro Experiments. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01058-0

Keywords

Navigation