Skip to main content
Log in

Expression of VEGFR2 Ligand Binding Domain in Pichia pink™ 4 Cells and Evaluation of Its Interactions with VEGF-A165 Receptor Binding Domain

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor A165 (VEGF-A165) and VEGF receptor 2 (KDR) are important mediators of angiogenesis. We aimed to express the soluble KDR ligand-binding domain (sKDR1-3) and evaluate its interaction with the VEGF-A165 receptor-binding domain (VEGFA165-RBD). sKDR1-3 DNA was designed and subcloned into pPinkα-HC plasmid. The cassette was transfected into the Pichia pink™ 4 genome by homologous recombination. We optimized the expression of sKDR1-3 under the induction of different methanol concentrations. VEGFA165-RBD was expressed in E. coli BL21 harboring pET28a( +)─VEGFA165-RBD vector under induction with IPTG with/without lactose. Interaction and biological activity of sKDR1-3 and VEGFA165-RBD were investigated by ELISA and anti-proliferation tests. sKDR1-3 migrated on SDS-PAGE gel as a 35–180 kDa protein due to glycosylation. The relative expression level of sKDR1-3 under 1% methanol was higher than 0.5% and 4% methanol induction. IPTG and cysteine were suitable for induction and refolding of VEGFA165-RBD. 25 ng sKDR1-3 and 20 ng VEGFA165-RBD showed strong binding. sKDR1-3 bound to VEGFA165-RBD and VEGF-A165 with dissociation constants of 0.148 and 0.2 nM, respectively. 4–10 nM concentrations of sKDR1-3 inhibited the proliferation of HUVE cells induced by 5 nM VEGFA165-RBD. In consideration, sKDR1-3 in the nanomolar concentration range, is a promising anticancer drug to inhibit angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

Abbreviations

VEGF:

Vascular endothelial growth factor

VEGFR-2:

VEGF receptor 2

VEGFA165-RBD:

VEGF-A165 receptor binding domain

VEGFA165-HBD:

VEGF-A165 heparin binding domain

KDR:

Kinase domain receptor

YPD:

Yeast Extract-Peptone-Dextrose Medium

YNB:

Yeast nitrogen base

Avastin:

An anti-VEGF-A165 monoclonal antibody

AOX1 :

alcohol oxidase I

ADE2:

Auxotrophic marker

amp:

Ampicillin

AmpR:

Ampicillin resistance

A280 :

Absorbance at 280 nm

BSA:

Bovine serum albumin

PBS:

Phosphate buffered saline

βME:

β-Mercaptoethanol

BMGY:

Buffered glycerol complex medium

BMMY:

Buffered methanol-complex medium

CYC1 TT:

Transcription termination of CYC1

DTT:

Dithiothreitol

ELISA:

Enzyme-linked immunosorbent assay

E. coli :

Escherichia coli

EDTA:

Ethylenediaminetetraacetic acid

G4S linker:

Gly4Ser

HGF:

Hepatocyte growth factor

His:

Histidine

HRP:

Horse radish peroxidase

HUVE:

Human umbilical vein endothelial cells

Ig:

Immunoglobulin-like

IgG:

Immunoglobulin class G

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

IC50 :

Half-maximum inhibitory concentration

Kaff :

Affinity constant

KD:

Dissociation constant

LBD:

Ligand binding domain

LB:

Luria–Bertani

Ni–NTA:

Nickel-nitrilotriaceticacid

NP:

Normal physiological proteins

nM:

Nanomolar

ms:

Millisecond

OD:

Optical density

OD600 :

Optical density at 600 nm

OD450 :

Optical density at 400 nm

PBS:

Phosphate buffered saline

PADE2 HC:

ADE2 promoter

Pad:

Pichia Adenine Dropout

PBST:

PBS containing tween 20

PAOX1 :

AOX1 promoter

PCR:

Polymerase chain reaction

PDB:

Protein data bank

pUC ori:

PUC origin of replication

PIGF:

Placental growth factor

RBD:

Receptor-binding domain

SDS-PAGE:

Sodium dodecyl sulfatepolyacrylamide gel electrophoresis

sKDR1-3:

Solube KDR domains 1–3

TB:

Terrific broth

TMB:

Tetramentylbenzidine

TBST:

TBS containing tween 20 and BSA

TRP2 gene:

Integration locus

TBS:

Tris-buffered saline

SXA :

β-D-Xylosidase/α-ʟ-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium

References

  1. Fairbrother, W. J., Champe, M. A., Christinger, H. W., Keyt, B. A., & Starovasnik, M. A. (1998). Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure, 6(5), 637–648.

    Article  CAS  PubMed  Google Scholar 

  2. Muller, Y. A., Christinger, H. W., Keyt, B. A., & de Vos, A. M. (1997). The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 Å resolution: multiple copy flexibility and receptor binding. Structure, 5(10), 1325–1338.

    Article  CAS  PubMed  Google Scholar 

  3. Muller, Y. A., Li, B., Christinger, H. W., Wells, J. A., Cunningham, B. C., & De Vos, A. M. (1997). Vascular endothelial growth factor: Crystal structure and functional mapping of the kinase domain receptor binding site. Proceedings of the National Academy of Sciences, 94(14), 7192–7197.

    Article  CAS  Google Scholar 

  4. Uciechowska-Kaczmarzyk, U., Babik, S., Zsila, F., Bojarski, K. K., Beke-Somfai, T., & Samsonov, S. A. (2018). Molecular dynamics-based model of VEGF-A and its heparin interactions. Journal of Molecular Graphics and Modelling, 82, 157–166.

    Article  CAS  PubMed  Google Scholar 

  5. Zajkowska, M., Lubowicka, E., Malinowski, P., Szmitkowski, M., & Ławicki, S. (2018). Plasma levels of VEGF-A, VEGF B, and VEGFR-1 and applicability of these parameters as tumor markers in diagnosis of breast cancer. Acta Biochimica Polonica, 65(4), 621–628.

    CAS  PubMed  Google Scholar 

  6. Brozzo, M. S., Bjelić, S., Kisko, K., Schleier, T., Leppänen, V.-M., Alitalo, K., et al. (2012). Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood, The Journal of the American Society of Hematology, 119(7), 1781–1788.

    CAS  Google Scholar 

  7. Leppänen, V.-M., Prota, A. E., Jeltsch, M., Anisimov, A., Kalkkinen, N., Strandin, T., et al. (2010). Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proceedings of the National Academy of Sciences, 107(6), 2425–2430.

    Article  Google Scholar 

  8. Cao, W., Li, H., Zhang, J., Li, D., Acheampong, D. O., Chen, Z., et al. (2013). Periplasmic expression optimization of VEGFR2 D3 adopting response surface methodology: Antiangiogenic activity study. Protein Expression and Purification, 90(2), 55–66.

    Article  CAS  PubMed  Google Scholar 

  9. Huang, X., Gottstein, C., Brekken, R. A., & Thorpe, P. E. (1998). Expression of soluble VEGF receptor 2 and characterization of its binding by surface plasmon resonance. Biochemical and Biophysical Research Communications, 252(3), 643–648.

    Article  CAS  PubMed  Google Scholar 

  10. Kou, B., Li, Y., Zhang, L., Zhu, G., Wang, X., Li, Y., et al. (2004). In vivo inhibition of tumor angiogenesis by a soluble VEGFR-2 fragment. Experimental and Molecular Pathology, 76(2), 129–137.

    Article  CAS  PubMed  Google Scholar 

  11. Li, H., Cao, W., Chen, Z., Acheampong, D. O., Jin, H., Li, D., et al. (2013). The antiangiogenic activity of a soluble fragment of the VEGFR extracellular domain. Biomedicine & Pharmacotherapy, 67(7), 599–606.

    Article  CAS  Google Scholar 

  12. Roeckl, W., Hecht, D., Sztajer, H., Waltenberger, J., Yayon, A., & Weich, H. A. (1998). Differential binding characteristics and cellular inhibition by soluble VEGF receptors 1 and 2. Experimental Cell Research, 241(1), 161–170.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, J., Li, H., Chen, W., Cao, P., & Wang, M. (2009). Preparation of extracellular domain 3 of human VEGF receptor-2 and the monitoring of its real-time binding to VEGF by biosensors. Biotechnology Progress, 25(6), 1703–1708.

    Article  CAS  PubMed  Google Scholar 

  14. Chandler, K. B., Leon, D. R., Meyer, R. D., Rahimi, N., & Costello, C. E. (2017). Site-specific N-glycosylation of endothelial cell receptor tyrosine kinase VEGFR-2. Journal of Proteome Research, 16(2), 677–688.

    Article  CAS  PubMed  Google Scholar 

  15. Ghavamipour, F., Shahangian, S. S., Sajedi, R. H., Arab, S. S., Mansouri, K., & Aghamaali, M. R. (2014). Development of a highly-potent anti-angiogenic VEGF 8–109 heterodimer by directed blocking of its VEGFR-2 binding site. The FEBS Journal, 281(19), 4479–4494.

    Article  CAS  PubMed  Google Scholar 

  16. Shahangian, S. S., Sajedi, R. H., Hasannia, S., Jalili, S., Mohammadi, M., Taghdir, M., et al. (2015). A conformation-based phage-display panning to screen neutralizing anti-VEGF VHHs with VEGFR2 mimicry behavior. International Journal of Biological Macromolecules, 77, 222–234.

    Article  CAS  PubMed  Google Scholar 

  17. Cao, Y., Sun, C., Huo, G., Wang, H., Wu, Y., Wang, F., et al. (2023). Novel hKDR mouse model depicts the antiangiogenesis and apoptosis-promoting effects of neutralizing antibodies targeting vascular endothelial growth factor receptor 2. Cancer Science, 114(1), 115–128.

    Article  CAS  PubMed  Google Scholar 

  18. Dehnavi, E., Siadat, S. O. R., Roudsari, M. F., & Khajeh, K. (2016). Cloning and high-level expression of β-xylosidase from Selenomonas ruminantium in Pichia pastoris by optimizing of pH, methanol concentration and temperature conditions. Protein Expression and Purification, 124, 55–61.

    Article  CAS  PubMed  Google Scholar 

  19. Beatty, J. D., Beatty, B. G., & Vlahos, W. G. (1987). Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. Journal of Immunological Methods, 100(1–2), 173–179.

    Article  CAS  PubMed  Google Scholar 

  20. Sarabipour, S., Ballmer-Hofer, K., & Hristova, K. (2016). VEGFR-2 conformational switch in response to ligand binding. eLife, 5, e13876.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Povolotskaya, I. S., Kondrashov, F. A., Ledda, A., & Vlasov, P. K. (2012). Stop codons in bacteria are not selectively equivalent. Biology Direct, 7, 1–13.

    Article  Google Scholar 

  22. Gruenberg, M. C., & TerAvest, M. A. (2023). A common inducer molecule enhances sugar utilization by Shewanella oneidensis MR-1. Journal of Industrial Microbiology and Biotechnology. https://doi.org/10.1093/jimb/kuad018

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kilikian, B. V., Suárez, I. D., Liria, C. W., & Gombert, A. K. (2000). Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochemistry, 35, 1019–1025.

    Article  CAS  Google Scholar 

  24. Leppänenc, K. A., Winklerb, F. K., & Ballmer-Hofera, K. (2011). Thermodynamic and structural description of allosterically regulated VEGF receptor 2 dimerization. Blood, the Journal of the American Society of Hematology, 119, 1781–1788.

    Google Scholar 

Download references

Acknowledgements

The authors thank the universities of Kharazmi, Maragheh, and Tarbiat Modares of Iran.

Author information

Authors and Affiliations

Authors

Contributions

ZJ, ZF, MMAB, and RHS conceived the idea and developed the theory. ZF and ED performed the experiments, verified the methods, supervised the findings, and analyzed the data. ZJ and ZF designed the manuscript and provided critical feedback to help shape the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Zohreh Jahanafrooz.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, Z., Boojar, M.M.A., Sajedi, R.H. et al. Expression of VEGFR2 Ligand Binding Domain in Pichia pink™ 4 Cells and Evaluation of Its Interactions with VEGF-A165 Receptor Binding Domain. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01057-1

Keywords

Navigation